Profiling the Antimalarial Mechanism of Artemisinin by Identifying Crucial Target Proteins

[1]  Philip E. Johnson,et al.  DNA binding by the antimalarial compound artemisinin , 2022, Scientific reports.

[2]  Li Dai,et al.  Identification of antimalarial targets of chloroquine by a combined deconvolution strategy of ABPP and MS-CETSA , 2021, Military Medical Research.

[3]  T. Efferth,et al.  Multi-omics approaches to improve malaria therapy. , 2021, Pharmacological research.

[4]  F. Guillonneau,et al.  Comprehensive Analysis of Transcript and Protein Relative Abundance During Blood Stages of Plasmodium falciparum Infection. , 2021, Journal of proteome research.

[5]  C. Amaratunga,et al.  Triple Artemisinin-Based Combination Therapies for Malaria - A New Paradigm? , 2020, Trends in parasitology.

[6]  Jianbin Zhang,et al.  Advances in the research on the targets of anti-malaria actions of artemisinin , 2020, Pharmacology & Therapeutics.

[7]  D. Fidock,et al.  Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria. , 2020, Annual review of microbiology.

[8]  S. Charman,et al.  System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion , 2020, bioRxiv.

[9]  Q. Lei,et al.  Activity-based protein profiling: Recent advances in medicinal chemistry. , 2020, European journal of medicinal chemistry.

[10]  Kayla Sylvester,et al.  RNA-Seq Analysis Illuminates the Early Stages of Plasmodium Liver Infection , 2019, mBio.

[11]  J. Yates,et al.  The interactome of 2-Cys peroxiredoxins in Plasmodium falciparum , 2019, Scientific Reports.

[12]  P. Nordlund,et al.  Horizontal Cell Biology: Monitoring Global Changes of Protein Interaction States with the Proteome-Wide Cellular Thermal Shift Assay (CETSA). , 2019, Annual review of biochemistry.

[13]  S. Krishna,et al.  A Temporizing Solution to "Artemisinin Resistance". , 2019, The New England journal of medicine.

[14]  Arun Sharma,et al.  Docking predictions based Plasmodium falciparum phosphoethanolamine methyl transferase inhibitor identification and in-vitro antimalarial activity analysis , 2019, BMC Chemistry.

[15]  P. Nordlund,et al.  Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay , 2019, Science Translational Medicine.

[16]  Marcel Deponte,et al.  Tyrosine substitution of a conserved active‐site histidine residue activates Plasmodium falciparum peroxiredoxin 6 , 2018, Protein science : a publication of the Protein Society.

[17]  E. Ashley,et al.  Malaria , 2018, The Lancet.

[18]  D. Wirth,et al.  Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum , 2017, Cell.

[19]  S. Meshnick,et al.  Unpacking 'Artemisinin Resistance'. , 2017, Trends in pharmacological sciences.

[20]  Jigang Wang,et al.  Nonradioactive quantification of autophagic protein degradation with L-azidohomoalanine labeling , 2017, Nature Protocols.

[21]  Terry K. Smith,et al.  Edinburgh Research Explorer Plasmodium Falciparum Choline Kinase Inhibition Leads to a Major Decrease in Phosphatidylethanolamine Causing Parasite Death , 2022 .

[22]  V. Barton,et al.  A Click Chemistry‐Based Proteomic Approach Reveals that 1,2,4‐Trioxolane and Artemisinin Antimalarials Share a Common Protein Alkylation Profile , 2016, Angewandte Chemie.

[23]  J. Hemingway,et al.  Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7 , 2016, Proceedings of the National Academy of Sciences.

[24]  Bin Liu,et al.  Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum , 2015, Nature Communications.

[25]  Scott Emrich,et al.  A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria , 2015, Nature.

[26]  S. Nair,et al.  Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi , 2015, Scientific Reports.

[27]  D. Kwiatkowski,et al.  Spread of artemisinin resistance in Plasmodium falciparum malaria. , 2014, The New England journal of medicine.

[28]  Choukri Ben Mamoun,et al.  Plasmodium falciparum phosphoethanolamine methyltransferase is essential for malaria transmission , 2013, Proceedings of the National Academy of Sciences.

[29]  P. Nordlund,et al.  Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay , 2013, Science.

[30]  S. Percário,et al.  Oxidative Stress in Malaria , 2012, International journal of molecular sciences.

[31]  H. Vial,et al.  Glycerophospholipid acquisition in Plasmodium - a puzzling assembly of biosynthetic pathways. , 2010, International journal for parasitology.

[32]  B. Meunier,et al.  Heme as trigger and target for trioxane-containing antimalarial drugs. , 2010, Accounts of chemical research.

[33]  H. Vial,et al.  Exploring metabolomic approaches to analyse phospholipid biosynthetic pathways in Plasmodium , 2010, Parasitology.

[34]  Choukri Ben Mamoun,et al.  Targeting the lipid metabolic pathways for the treatment of malaria , 2009, Drug development research.

[35]  M. Fukuda,et al.  Evidence of artemisinin-resistant malaria in western Cambodia. , 2008, The New England journal of medicine.

[36]  G. Pessi,et al.  Disruption of the Plasmodium falciparum PfPMT Gene Results in a Complete Loss of Phosphatidylcholine Biosynthesis via the Serine-Decarboxylase-Phosphoethanolamine-Methyltransferase Pathway and Severe Growth and Survival Defects* , 2008, Journal of Biological Chemistry.

[37]  S. Kano,et al.  Roles of 1‐Cys peroxiredoxin in haem detoxification in the human malaria parasite Plasmodium falciparum , 2005, The FEBS journal.

[38]  S. Müller Redox and antioxidant systems of the malaria parasite Plasmodium falciparum , 2004, Molecular microbiology.

[39]  S. Krishna,et al.  Artemisinins: mechanisms of action and potential for resistance. , 2004, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[40]  G. Pessi,et al.  A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  K. Becker,et al.  Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. , 2004, International journal for parasitology.

[42]  S. Müller,et al.  2-Cys peroxiredoxin PfTrx-Px1 is involved in the antioxidant defence of Plasmodium falciparum. , 2003, Molecular and biochemical parasitology.

[43]  S. Kano,et al.  Disruption of the Plasmodium falciparum 2‐Cys peroxiredoxin gene renders parasites hypersensitive to reactive oxygen and nitrogen species , 2003, FEBS letters.

[44]  H. D. del Portillo,et al.  Malaria parasites contain two identical copies of an elongation factor 1 alpha gene. , 1998, Molecular and biochemical parasitology.

[45]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[46]  Edward W. Tate,et al.  Activity-Based Protein Profiling for the Study of Parasite Biology. , 2019, Current topics in microbiology and immunology.