Scale dependent prediction of reference evapotranspiration based on Multi-Variate Empirical mode decomposition

This study proposes a novel method for estimation of reference evapotranspiration (ETo) by accounting the time scale of variability using the Multivariate Empirical Mode Decomposition (MEMD). First the ETo and the four predictor variables such as solar radiation, air temperature, relative humidity and wind velocity are decomposed into different intrinsic mode functions (IMFs) and a residue using MEMD. To model ETo, first the modes are modeled separately using the Stepwise Linear Regression (SLR) after identifying the significant predictors at different time scales based on the p-value statistics. Subsequently, the predicted modes are recombined to obtain ETo at the observation scale. The method is demonstrated by predicting the monthly ETo from Stratford station in United States. The results of the study clearly exhibited the superior performance of the proposed MEMD-SLR model when compared with that by M5 model tree, SLR and the EMD-SLR hybrid model.

[1]  Nicolas Massei,et al.  Assessing the expression of large-scale climatic fluctuations in the hydrological variability of daily Seine river flow (France) between 1950 and 2008 using Hilbert–Huang Transform , 2012 .

[2]  Shaozhong Kang,et al.  Multiscale spectral analysis of temporal variability in evapotranspiration over irrigated cropland in an arid region , 2013 .

[3]  William E. Eichinger,et al.  Empirical Mode Decomposition applied to solar irradiance, global temperature, sunspot number, and CO2 concentration data , 2011 .

[4]  Ö. Kisi Generalized regression neural networks for evapotranspiration modelling , 2006 .

[5]  S. Adarsh,et al.  Multiscale Analysis of Suspended Sediment Concentration Data from Natural Channels Using the Hilbert-Huang Transform , 2015 .

[6]  Narendra Singh Raghuwanshi,et al.  Estimating Evapotranspiration using Artificial Neural Network , 2002 .

[7]  J. R. Quinlan Learning With Continuous Classes , 1992 .

[8]  D. P. Mandic,et al.  Multivariate empirical mode decomposition , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Shervin Motamedi,et al.  Soft computing approaches for forecasting reference evapotranspiration , 2015, Comput. Electron. Agric..

[10]  Richard G. Allen,et al.  Report. Expert Consultation on Revision of FAO Methodologies for Crop Water Requirements. , 1992 .

[11]  Ahsan Kareem,et al.  Time-Frequency Analysis of Nonstationary Process Based on Multivariate Empirical Mode Decomposition , 2016 .

[12]  Hafzullah Aksoy,et al.  An explicit neural network formulation for evapotranspiration , 2008 .

[13]  S. S. Shen,et al.  A confidence limit for the empirical mode decomposition and Hilbert spectral analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  Wei Hu,et al.  Soil water prediction based on its scale-specific control using multivariate empirical mode decomposition , 2013 .

[15]  Jianzhong Zhou,et al.  Streamflow estimation by support vector machine coupled with different methods of time series decomposition in the upper reaches of Yangtze River, China , 2016, Environmental Earth Sciences.

[16]  Shengzhi Huang,et al.  Monthly streamflow prediction using modified EMD-based support vector machine , 2014 .

[17]  Giuseppe Provenzano,et al.  Assessing a Local Losses Evaluation Procedure for Low-Pressure Lay-Flat Drip Laterals , 2014 .

[18]  Francesco Serinaldi,et al.  Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: An empirical examination , 2011 .

[19]  Murat Cobaner Reference evapotranspiration based on Class A pan evaporation via wavelet regression technique , 2011, Irrigation Science.

[20]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[21]  Pu Wang,et al.  Additive Model for Monthly Reservoir Inflow Forecast , 2015 .

[22]  K. P. Sudheer,et al.  Estimating Actual Evapotranspiration from Limited Climatic Data Using Neural Computing Technique , 2003 .

[23]  Gabriel Rilling,et al.  Bivariate Empirical Mode Decomposition , 2007, IEEE Signal Processing Letters.

[24]  Danilo P. Mandic,et al.  Empirical Mode Decomposition for Trivariate Signals , 2010, IEEE Transactions on Signal Processing.

[25]  Ozgur Kisi,et al.  An investigation on generalization ability of artificial neural networks and M5 model tree in modeling reference evapotranspiration , 2016, Theoretical and Applied Climatology.

[26]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[27]  Lakshman Nandagiri,et al.  Performance Evaluation of Reference Evapotranspiration Equations across a Range of Indian Climates , 2006 .

[28]  Ozgur Kisi,et al.  Evapotranspiration modelling using support vector machines / Modélisation de l'évapotranspiration à l'aide de ‘support vector machines’ , 2009 .

[29]  S. Adarsh,et al.  Time–frequency characterization of sub-divisional scale seasonal rainfall in India using the Hilbert–Huang transform , 2016, Stochastic Environmental Research and Risk Assessment.

[30]  Amin Elshorbagy,et al.  Modelling the dynamics of the evapotranspiration process using genetic programming , 2007 .

[31]  Ozgur Kisi,et al.  Evapotranspiration Modeling Using Linear Genetic Programming Technique , 2010 .

[32]  O. Kisi Comparison of Different Empirical Methods for Estimating Daily Reference Evapotranspiration in Mediterranean Climate , 2014 .

[33]  L. Karthikeyan,et al.  Predictability of nonstationary time series using wavelet and EMD based ARMA models , 2013 .

[34]  Ozgur Kisi,et al.  Generalizability of Gene Expression Programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran , 2014 .

[35]  O. Kisi,et al.  SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment , 2012 .

[36]  Vijay P. Singh,et al.  Estimation of Mean Annual Flood in Indian Catchments Using Backpropagation Neural Network and M5 Model Tree , 2010 .

[37]  N. Huang,et al.  A study of the characteristics of white noise using the empirical mode decomposition method , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Patrick Flandrin,et al.  A complete ensemble empirical mode decomposition with adaptive noise , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[39]  V. Jothiprakash,et al.  Effect of Pruning and Smoothing while Using M5 Model Tree Technique for Reservoir Inflow Prediction , 2011 .

[40]  Ozgur Kisi,et al.  Least squares support vector machine for modeling daily reference evapotranspiration , 2012, Irrigation Science.

[41]  Norden E. Huang,et al.  STATISTICAL SIGNIFICANCE TEST OF INTRINSIC MODE FUNCTIONS , 2010 .

[42]  Branimir Todorovic,et al.  Forecasting of Reference Evapotranspiration by Artificial Neural Networks , 2003 .

[43]  Multiscale variability of the evapotranspiration in eastern Amazonia , 2010 .

[44]  Turgay Partal,et al.  Modelling evapotranspiration using discrete wavelet transform and neural networks , 2009 .

[45]  R. Allen,et al.  Evapotranspiration and Irrigation Water Requirements , 1990 .

[46]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[47]  Ali Rahimikhoob,et al.  Comparison between M5 Model Tree and Neural Networks for Estimating Reference Evapotranspiration in an Arid Environment , 2014, Water Resources Management.

[48]  Özgür Kişi,et al.  Evapotranspiration modeling using a wavelet regression model , 2010, Irrigation Science.

[49]  Mahesh Pal,et al.  M5 model tree based modelling of reference evapotranspiration , 2009 .

[50]  Christina W. Tsai,et al.  Identification of varying time scales in sediment transport using the Hilbert–Huang Transform method , 2012 .

[51]  Yongxiang Huang,et al.  Analysis of daily river flow fluctuations using Empirical Mode Decomposition and arbitrary order Hilbert spectral analysis , 2009 .