Bipartite Unicyclic Graphs with Large Energy

Let G be a graph with n vertices and λ1 ,λ 2, ··· ,λ n be n eigenvalues of its adjacency matrix A(G). The energy of G, denoted by E(G), is defined to be the summation n � i=1 |λ i|. Denote by

[1]  W. Shiu,et al.  Energy ordering of unicyclic graphs , 2006 .

[2]  I. Gutman Total π-electron energy of benzenoid hydrocarbons , 1992 .

[3]  Juan Rada,et al.  Polygonal chains with minimal energy , 2003 .

[4]  Wenshui Lin,et al.  On the extremal energies of trees with a given maximum degree , 2005 .

[5]  Bolian Liu,et al.  On a Pair of Equienergetic Graphs , 2008 .

[6]  I. Gutman Total ?-electron energy of benzenoid hydrohabons , 1983 .

[7]  I. Outman,et al.  Acyclic conjugated molecules, trees and their energies , 1987 .

[8]  Ivan Gutman,et al.  Topology and stability of conjugated hydrocarbons: The dependence of total π-electron energy on molecular topology , 2005 .

[9]  Bo Zhou,et al.  MINIMAL ENERGY OF BIPARTITE UNICYCLIC GRAPHS OF A GIVEN BIPARTITION , 2022 .

[10]  Yaoping Hou,et al.  Unicyclic graphs with maximal energy , 2002 .

[11]  Michael Doob,et al.  Spectra of graphs , 1980 .

[12]  Yaoping Hou,et al.  Bicyclic graphs with minimum energy , 2001 .

[13]  F. Tian,et al.  New upper bounds for the energy of graphs , 2004 .

[14]  I. Gutman,et al.  Mathematical Concepts in Organic Chemistry , 1986 .

[15]  Bo Zhou,et al.  Minimal energy of unicyclic graphs of a given diameter , 2008 .

[16]  Ivan Gutman,et al.  Acyclic systems with extremal Hückel π-electron energy , 1977 .

[17]  Weigen Yan,et al.  On the minimal energy of trees with a given diameter , 2005, Appl. Math. Lett..

[18]  I. Gutman The Energy of a Graph: Old and New Results , 2001 .

[19]  Huiqing Liu,et al.  Some upper bounds for the energy of graphs , 2007 .

[20]  Yaoping Hou,et al.  Unicyclic Graphs with Minimal Energy , 2001 .