Vanadium Dioxide: The Multistimuli Responsive Material and Its Applications.

The reversible, ultrafast, and multistimuli responsive phase transition of vanadium dioxide (VO2 ) makes it an intriguing "smart" material. Its crystallographic transition from the monoclinic to tetragonal phases can be triggered by diverse stimuli including optical, thermal, electrical, electrochemical, mechanical, or magnetic perturbations. Consequently, the development of high-performance smart devices based on VO2 grows rapidly. This review systematically summarizes VO2 -based emerging technologies by classifying different stimuli (inputs) with their corresponding responses (outputs) including consideration of the mechanisms at play. The potential applications of such devices are vast and include switches, memories, photodetectors, actuators, smart windows, camouflages, passive radiators, resonators, sensors, field effect transistors, magnetic refrigeration, and oscillators. Finally, the challenges of integrating VO2 into smart devices are discussed and future developments in this area are considered.

[1]  Bicai Pan,et al.  Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2. , 2013, The Journal of chemical physics.

[2]  J. J. Kweon,et al.  Infrared-wave number-dependent metal–insulator transition in vanadium dioxide nanoparticles , 2010 .

[3]  Yanfeng Gao,et al.  Effects of Annealing Parameters on Optical Properties of Thermochromic VO2 Films Prepared in Aqueous Solution , 2010 .

[4]  Stephen R. Leone,et al.  Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy , 2017, Proceedings of the National Academy of Sciences.

[5]  Aibing Yu,et al.  Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties , 2016 .

[6]  Jinzhong Zhang,et al.  Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal–insulator transition process , 2015 .

[7]  W. Cao,et al.  A novel inorganic precipitation-peptization method for VO2 sol and VO2 nanoparticles preparation: Synthesis, characterization and mechanism. , 2016, Journal of colloid and interface science.

[8]  Pengwan Chen,et al.  Self-Assembling VO2 Nanonet with High Switching Performance at Wafer-Scale , 2015 .

[9]  John L. Volakis,et al.  Equivalent circuit for VO2 phase change material film in reconfigurable frequency selective surfaces , 2015 .

[10]  Ning Wang,et al.  Periodic micro-patterned VO2 thermochromic films by mesh printing , 2016 .

[11]  Yuanyuan Luo,et al.  Phase Evolution of VO2 Polymorphs during Hydrothermal Treatment in the Presence of AOT , 2017 .

[12]  Sang June Cho,et al.  Epitaxial VO2 thin-film-based radio-frequency switches with electrical activation , 2017 .

[13]  Ning Wang,et al.  Bioinspired multifunctional vanadium dioxide: improved thermochromism and hydrophobicity. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[14]  Michael E. A. Warwick,et al.  Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing , 2014 .

[15]  S. Magdassi,et al.  Solution-based fabrication of VO2 (M) nanoparticles via lyophilisation , 2015 .

[16]  B. Viswanath,et al.  Magnetoresistance across metal–insulator transition in VO2 micro crystals , 2017 .

[17]  Yang Zhou,et al.  Emerging Thermal‐Responsive Materials and Integrated Techniques Targeting the Energy‐Efficient Smart Window Application , 2018 .

[18]  Peter W. Stephens,et al.  Insulator to correlated metal transition in V1?xMoxO2 , 2009 .

[19]  Jean-Christophe Orlianges,et al.  Current-induced electrical self-oscillations across out-of-plane threshold switches based on VO2 layers integrated in crossbars geometry , 2014 .

[20]  A. Crunteanu,et al.  Generation of electrical self-oscillations in two-terminal switching devices based on the insulator-to-metal phase transition of VO2 thin films , 2011, International Journal of Microwave and Wireless Technologies.

[21]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[22]  C. N. Berglund,et al.  Electronic Properties of V O 2 near the Semiconductor-Metal Transition , 1969 .

[23]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[24]  S. Parkin,et al.  Giant reversible, facet-dependent, structural changes in a correlated-electron insulator induced by ionic liquid gating , 2015, Proceedings of the National Academy of Sciences.

[25]  Y. Tokura,et al.  Distinct Substrate Effect on the Reversibility of the Metal–Insulator Transitions in Electrolyte‐Gated VO2 Thin Films , 2015 .

[26]  Daniel Wegkamp,et al.  Ultrafast dynamics during the photoinduced phase transition in VO2 , 2015 .

[27]  Yang Zhou,et al.  Vanadium dioxide for energy conservation and energy storage applications: Synthesis and performance improvement , 2018 .

[28]  C. Grigoropoulos,et al.  Directly Metering Light Absorption and Heat Transfer in Single Nanowires Using Metal–Insulator Transition in VO2 , 2015 .

[29]  F. Kong,et al.  Synthesis and thermal stability of W-doped VO2 nanocrystals , 2011 .

[30]  R. Chang,et al.  Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching. , 2017, ACS nano.

[31]  B. E. Yekta,et al.  The Effects of Vanadium Pentoxide to Oxalic Acid Ratio and Different Atmospheres on the Formation of VO2 Nanopowders Synthesized via Sol–Gel Method , 2017, Journal of Electronic Materials.

[32]  R. Cabrera,et al.  Phase transition behavior in microcantilevers coated with M1-phase VO2 and M2-phase VO2:Cr thin films , 2012 .

[33]  J. Madden,et al.  Polymer artificial muscles , 2007 .

[34]  Emmanuelle Merced,et al.  A micro-electro-mechanical memory based on the structural phase transition of VO2 , 2013 .

[35]  Jeppe Seidelin Dam,et al.  Room-temperature mid-infrared single-photon spectral imaging , 2012, Nature Photonics.

[36]  Chor Yong Tay,et al.  Index-tunable anti-reflection coatings: Maximizing solar modulation ability for vanadium dioxide-based smart thermochromic glazing , 2018 .

[37]  Joyeeta Nag,et al.  Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. , 2014, Nano letters.

[38]  Félix E. Fernández,et al.  Dynamics of photothermally driven VO2-coated microcantilevers , 2011 .

[39]  M. Kawasaki,et al.  Collective bulk carrier delocalization driven by electrostatic surface charge accumulation , 2012, Nature.

[40]  Gokul Gopalakrishnan,et al.  Dielectric and carrier transport properties of vanadium dioxide thin films across the phase transition utilizing gated capacitor devices , 2010 .

[41]  R. Binions,et al.  Electric field assisted chemical vapour deposition - a new method for the preparation of highly porous supercapacitor electrodes , 2014 .

[42]  Kai Liu,et al.  Performance limits of microactuation with vanadium dioxide as a solid engine. , 2013, ACS nano.

[43]  Heng Liu,et al.  Synthesis and Electrical Properties of Tungsten-Doped Vanadium Dioxide Nanopowders by Thermolysis , 2007 .

[44]  M. Raschke,et al.  Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2 , 2015, Nature Communications.

[45]  Hiroki R Ueda,et al.  Electrochemical gating-induced reversible and drastic resistance switching in VO2 nanowires , 2015, Scientific Reports.

[46]  C. Rettner,et al.  Evidence for Ionic Liquid Gate-Induced Metallization of Vanadium Dioxide Bars over Micron Length Scales. , 2017, Nano letters.

[47]  J. Narayan,et al.  Epitaxial VO2/Cr2O3/sapphire heterostructure for multifunctional applications , 2011 .

[48]  Xiao Hu,et al.  VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission , 2015 .

[49]  Kenji Uchino Piezoelectric ultrasonic motors: overview , 1998 .

[50]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[51]  Matthew D. Pickett,et al.  Local Temperature Redistribution and Structural Transition During Joule‐Heating‐Driven Conductance Switching in VO2 , 2013, Advanced materials.

[52]  Efficient and Hysteresis-Free Field Effect Modulation of Ambipolarly Doped Vanadium Dioxide Nanowires , 2016 .

[53]  S Lupi,et al.  Evidence of a pressure-induced metallization process in monoclinic VO2. , 2007, Physical review letters.

[54]  Yi Jia,et al.  Fast Adaptive Thermal Camouflage Based on Flexible VO₂/Graphene/CNT Thin Films. , 2015, Nano letters.

[55]  Costas P. Grigoropoulos,et al.  A Lithography‐Free and Field‐Programmable Photonic Metacanvas , 2018, Advanced materials.

[56]  Nevill Mott,et al.  Metal-Insulator Transition , 1968 .

[57]  Xiujian Zhao,et al.  Unusual magnetic transition near metal-insulator transition and paramagnetic anomaly in VO2 , 2017 .

[58]  Jinlong Yang,et al.  Ultrahigh Infrared Photoresponse from Core–Shell Single‐Domain‐VO2/V2O5 Heterostructure in Nanobeam , 2014 .

[59]  Ioannis Papakonstantinou,et al.  A bioinspired solution for spectrally selective thermochromic VO2 coated intelligent glazing. , 2013, Optics express.

[60]  Chunrui Wang,et al.  The effect of Argon pressure dependent V thin film on the phase transition process of (020) VO2 thin film , 2018 .

[61]  Guibin Zan,et al.  Free-standing SWNTs/VO2/Mica hierarchical films for high-performance thermochromic devices , 2017 .

[62]  Haiyan Wang,et al.  Continuous Tuning of Phase Transition Temperature in VO2 Thin Films on c-Cut Sapphire Substrates via Strain Variation. , 2017, ACS applied materials & interfaces.

[63]  R. Vallée,et al.  Fabrication of high-quality VO2 thin films by ion-assisted dual ac magnetron sputtering. , 2013, ACS applied materials & interfaces.

[64]  Guoqiang Tan,et al.  VO2-based double-layered films for smart windows: Optical design, all-solution preparation and improved properties , 2011 .

[65]  D J Hilton,et al.  Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide. , 2007, Physical review letters.

[66]  Junqiao Wu,et al.  Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition , 2012 .

[67]  Shriram Ramanathan,et al.  Studies on room-temperature electric-field effect in ionic-liquid gated VO 2 three-terminal devices , 2012 .

[68]  A. Sawa,et al.  Modulation of Metal–Insulator Transition in VO2 by Electrolyte Gating‐Induced Protonation , 2016 .

[69]  Allen,et al.  VO2: Peierls or Mott-Hubbard? A view from band theory. , 1994, Physical review letters.

[70]  C. Zou,et al.  Growth and phase transition characteristics of pure M-phase VO2 epitaxial film prepared by oxide molecular beam epitaxy , 2013 .

[71]  C. Grigoropoulos,et al.  A 0.2 V Micro-Electromechanical Switch Enabled by a Phase Transition. , 2018, Small.

[72]  Wuhong Xue,et al.  A 1D Vanadium Dioxide Nanochannel Constructed via Electric-Field-Induced Ion Transport and its Superior Metal-Insulator Transition. , 2017, Advanced materials.

[73]  H. Jeong,et al.  Flexible thermochromic window based on hybridized VO2/graphene. , 2013, ACS nano.

[74]  Claes-Göran Granqvist,et al.  Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature , 2009 .

[75]  Jorge Kittl,et al.  Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition , 2011 .

[76]  Elizabeth C. Dickey,et al.  Electrical and optical properties of sputtered amorphous vanadium oxide thin films , 2012 .

[77]  Mohamed Chaker,et al.  A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction , 2014, Science.

[78]  Yanfeng Gao,et al.  Nanoporous thermochromic VO(2) films with low optical constants, enhanced luminous transmittance and thermochromic properties. , 2011, ACS applied materials & interfaces.

[79]  Shriram Ramanathan,et al.  Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices , 2013 .

[80]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[81]  J. C. Kieffer,et al.  Evidence for a structurally-driven insulator-to-metal transition in VO 2 : A view from the ultrafast timescale , 2004, cond-mat/0403214.

[82]  Hong Wang,et al.  Roles of grain boundaries on the semiconductor to metal phase transition of VO2 thin films , 2015 .

[83]  Y. Saito,et al.  Field emission from carbon nanotubes and its application to electron sources , 2000 .

[84]  Peng Li,et al.  Enhanced luminous transmittance of thermochromic VO2 thin film patterned by SiO2 nanospheres , 2017 .

[85]  Harry A Atwater,et al.  Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. , 2010, Optics express.

[86]  Wei Chen,et al.  New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. , 2009, Nature nanotechnology.

[87]  Jian Lin,et al.  Selective Synthesis of Vanadium Oxides and Investigation of the Thermochromic Properties of VO2 by Infrared Spectroscopy , 2013 .

[88]  Yijia Gu,et al.  Extended mapping and exploration of the vanadium dioxide stress-temperature phase diagram. , 2010, Nano letters.

[89]  Richard F. Haglund,et al.  Optically Monitored Electrical Switching in VO2 , 2015 .

[90]  Xiaonan Chen,et al.  Voltage-Triggered Ultrafast Phase Transition in Vanadium Dioxide Switches , 2013, IEEE Electron Device Letters.

[91]  Sang June Cho,et al.  Epitaxial VO2 thin film-based radio-frequency switches with thermal activation , 2017 .

[92]  Ping Jin,et al.  Composite Film of Vanadium Dioxide Nanoparticles and Ionic Liquid-Nickel-Chlorine Complexes with Excellent Visible Thermochromic Performance. , 2016, ACS applied materials & interfaces.

[93]  David R. Smith,et al.  Voltage switching of a VO2 memory metasurface using ionic gel , 2014 .

[94]  Z. Ding,et al.  The phase transition of W-doped VO2 nanoparticles synthesized by an improved thermolysis method. , 2013, Journal of nanoscience and nanotechnology.

[95]  Suman Datta,et al.  Joule Heating-Induced Metal-Insulator Transition in Epitaxial VO2/TiO2 Devices. , 2016, ACS applied materials & interfaces.

[96]  S. Fourmaux,et al.  Optical switching in VO2 films by below-gap excitation , 2008 .

[97]  Dongfang Li,et al.  Dynamic control of light emission faster than the lifetime limit using VO2 phase-change , 2015, Nature Communications.

[98]  You Zhou,et al.  Mott Memory and Neuromorphic Devices , 2015, Proceedings of the IEEE.

[99]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.

[100]  T. M. Rice,et al.  Electron Localization Induced by Uniaxial Stress in Pure V O 2 , 1975 .

[101]  Xiaobo Tan,et al.  A Composite Hysteresis Model in Self-Sensing Feedback Control of Fully Integrated $\mathrm{VO_2}$ Microactuators , 2016, IEEE/ASME Transactions on Mechatronics.

[102]  Naor Vardi,et al.  Ramp‐Reversal Memory and Phase‐Boundary Scarring in Transition Metal Oxides , 2017, Advanced materials.

[103]  Hua Guo,et al.  Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO₂ nanowires. , 2011, Nano letters.

[104]  Shriram Ramanathan,et al.  Suspended sub-50 nm vanadium dioxide membrane transistors: fabrication and ionic liquid gating studies. , 2012, Nanoscale.

[105]  P. Jin,et al.  Surface plasmon resonance tunability in VO2/Au/VO2 thermochromic structure , 2014 .

[106]  Long Lin,et al.  The Memristive Properties of a Single VO2 Nanowire with Switching Controlled by Self‐Heating , 2013, Advanced materials.

[107]  Liliana Stan,et al.  Reconfigurable Vanadium Dioxide Nanomembranes and Microtubes with Controllable Phase Transition Temperatures. , 2018, Nano letters.

[108]  Yong Ding,et al.  External‐Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor , 2010, Advanced materials.

[109]  Russell Binions,et al.  Sol-gel approaches to thermochromic vanadium dioxide coating for smart glazing application , 2017 .

[110]  Zongtao Zhang,et al.  Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing , 2012 .

[111]  Ping Jin,et al.  Surface plasmon resonance induced excellent solar control for VO₂@SiO₂ nanorods-based thermochromic foils. , 2013, Nanoscale.

[112]  Yanfeng Gao,et al.  Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition , 2011 .

[113]  F. Krebs,et al.  Fast Switching ITO Free Electrochromic Devices , 2014 .

[114]  Chuan Wang,et al.  Increasing efficiency, speed, and responsivity of vanadium dioxide based photothermally driven actuators using single-wall carbon nanotube thin-films. , 2015, ACS nano.

[115]  Nevill Francis Mott,et al.  Metal-insulator transition in vanadium dioxide , 1975 .

[116]  S. Magdassi,et al.  Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature , 2015 .

[117]  S. Magdassi,et al.  Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows. , 2017, Small.

[118]  B. Kim,et al.  Magnetic field-dependent ordinary Hall effect and thermopower of VO2 thin films , 2016 .

[119]  H. Ohta,et al.  Infrared-transmittance tunable metal-insulator conversion device with thin-film-transistor-type structure on a glass substrate , 2017, 1705.00130.

[120]  Javier Aizpurua,et al.  Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide , 2016, Light: Science & Applications.

[121]  G. Odegard,et al.  Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO2 Nanowires. , 2015, Nano letters.

[122]  M. Duchamp,et al.  Single‐Crystalline W‐Doped VO2 Nanobeams with Highly Reversible Electrical and Plasmonic Responses Near Room Temperature , 2016 .

[123]  Yuanyuan Luo,et al.  Electrochemical Synthesis of Amorphous VO2 Colloids and Their Rapid Thermal Transforming to VO2 (M) Nanoparticles with Good Thermochromic Performance. , 2016, Chemistry.

[124]  Jinlong Yang,et al.  Direct hydrothermal synthesis of monoclinic VO2(M) single-domain nanorods on large scale displaying magnetocaloric effect , 2011 .

[125]  J. Wu,et al.  Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO₂ microwire. , 2014, ACS applied materials & interfaces.

[126]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[127]  A. Crunteanu,et al.  Electrical and optical properties of vanadium dioxide containing gold nanoparticles deposited by pulsed laser deposition , 2012 .

[128]  S. Altendorf,et al.  Metallization of Epitaxial VO2 Films by Ionic Liquid Gating through Initially Insulating TiO2 Layers. , 2016, Nano letters.

[129]  Xiaoguang Li,et al.  Facile synthesis of various epitaxial and textured polymorphs of vanadium oxide thin films on the (0006)-surface of sapphire substrates , 2017 .

[130]  Kai Liu,et al.  Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation , 2012 .

[131]  W. Butler,et al.  Calculated electronic and magnetic structure of rutile phase V1−xCrxO2 , 2009 .

[132]  Byung-Gyu Chae,et al.  Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor , 2007 .

[133]  Liuming Yan,et al.  Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. , 2013, Physical chemistry chemical physics : PCCP.

[134]  Stuart S. P. Parkin,et al.  Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy , 2013, Nature Physics.

[135]  Wanxia Huang,et al.  Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method , 2012, Journal of Materials Science: Materials in Electronics.

[136]  Ivan K Schuller,et al.  Role of thermal heating on the voltage induced insulator-metal transition in VO2. , 2013, Physical review letters.

[137]  Heng Ji,et al.  Modulation of the electrical properties of VO₂ nanobeams using an ionic liquid as a gating medium. , 2012, Nano letters.

[138]  Bong-Joong Kim,et al.  Real-Time Structural and Electrical Characterization of Metal-Insulator Transition in Strain-Modulated Single-Phase VO2 Wires with Controlled Diameters. , 2016, Nano letters.

[139]  Jinzhong Zhang,et al.  The electro-optic mechanism and infrared switching dynamic of the hybrid multilayer VO2/Al:ZnO heterojunctions , 2017, Scientific Reports.

[140]  J. A. van Kan,et al.  Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires. , 2014, Nanoscale.

[141]  Ming-Hui Lu,et al.  Polymorph separation induced by angle distortion and electron delocalization effect via orbital modification in VO2 epitaxial thin films , 2017 .

[142]  A. Cavalleri,et al.  Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. , 2001, Physical review letters.

[143]  Yanfeng Gao,et al.  Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control , 2012 .

[144]  Dai‐Sik Kim,et al.  Terahertz-Triggered Phase Transition and Hysteresis Narrowing in a Nanoantenna Patterned Vanadium Dioxide Film. , 2015, Nano letters.

[145]  W. J. Venstra,et al.  Selective High‐Frequency Mechanical Actuation Driven by the VO2 Electronic Instability , 2017, Advanced materials.

[146]  Yi Xie,et al.  Design of vanadium oxide structures with controllable electrical properties for energy applications. , 2013, Chemical Society reviews.

[147]  Haihong Yin,et al.  Low-temperature CVD synthesis of patterned core-shell VO2@ZnO nanotetrapods and enhanced temperature-dependent field-emission properties. , 2014, Nanoscale.

[148]  S. Wolf,et al.  Ferromagnetism in Rutile Structure Cr Doped VO2 Thin Films Prepared by Reactive-Bias Target Ion Beam Deposition , 2008 .

[149]  T. Kawakubo Crystal Distortion and Electric and Magnetic Transition in VO2 , 1965 .

[150]  R. Haglund,et al.  Ultrafast changes in lattice symmetry probed by coherent phonons , 2010, Nature Communications.

[151]  C. Detavernier,et al.  Metal‐Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control , 2015 .

[152]  D. Milliron,et al.  Electrochemically Induced Transformations of Vanadium Dioxide Nanocrystals. , 2016, Nano letters.

[153]  Claudia Felser,et al.  Distinct electronic structure of the electrolyte gate-induced conducting phase in vanadium dioxide revealed by high-energy photoelectron spectroscopy. , 2014, ACS nano.

[154]  Huikai Xie,et al.  VO2-Based MEMS Mirrors , 2016, Journal of Microelectromechanical Systems.

[155]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[156]  Alberto Piqué,et al.  Strain Effects in Epitaxial VO2 Thin Films on Columnar Buffer-Layer TiO2/Al2O3 Virtual Substrates. , 2017, ACS applied materials & interfaces.

[157]  Yanfeng Gao,et al.  Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings , 2013, Scientific Reports.

[158]  C. Granqvist,et al.  Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met , 2012 .

[159]  G. Ning,et al.  Preparation, characterization and properties of thermochromic tungsten-doped vanadium dioxide by thermal reduction and annealing , 2010 .

[160]  S. Magdassi,et al.  One-step hydrothermal synthesis of rare earth/W-codoped VO2 nanoparticles: Reduced phase transition temperature and improved thermochromic properties , 2017 .

[161]  I. Parkin,et al.  Direct and continuous synthesis of VO2 nanoparticles. , 2015, Nanoscale.

[162]  Bin Su,et al.  Dual-Phase Transformation: Spontaneous Self-Template Surface-Patterning Strategy for Ultra-transparent VO2 Solar Modulating Coatings. , 2017, ACS nano.

[163]  Yunfei Luo,et al.  Optimization of microstructure and optical properties of VO2 thin film prepared by reactive sputtering , 2013 .

[164]  Hidekazu Tanaka,et al.  Multistate Memory Devices Based on Free‐standing VO2/TiO2 Microstructures Driven by Joule Self‐Heating , 2012, Advanced materials.

[165]  Ibrahim Abdulhalim,et al.  Vanadium dioxide nanogrid films for high transparency smart architectural window applications. , 2015, Optics express.

[166]  J. Wu,et al.  Room temperature photo-induced phase transitions of VO2 nanodevices , 2011 .

[167]  Guanghai Li,et al.  Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance. , 2014, ACS Applied Materials and Interfaces.

[168]  Kai Liu,et al.  Self-Assembly and Horizontal Orientation Growth of VO2 Nanowires , 2014, Scientific reports.

[169]  Ning Wang,et al.  Multifunctional overcoats on vanadium dioxide thermochromic thin films with enhanced luminous transmission and solar modulation, hydrophobicity and anti-oxidation , 2013 .

[170]  Suman Datta,et al.  Computing with dynamical systems based on insulator-metal-transition oscillators , 2016, ArXiv.

[171]  Nelson V. Tabiryan,et al.  Photogenerating work from polymers , 2008 .

[172]  E. Koudoumas,et al.  Thermochromic amorphous VO2 coatings grown by APCVD using a single-precursor , 2014 .

[173]  C. Zou,et al.  Strain dynamics of ultrathin VO₂ film grown on TiO₂ (001) and the associated phase transition modulation. , 2014, Nano letters.

[174]  Alexander Pergament,et al.  Electrical switching and Mott transition in VO2 , 2000 .

[175]  Zhenda Lu,et al.  Synthesis and thermochromic properties of vanadium dioxide colloidal particles , 2011 .

[176]  I. Parkin,et al.  Combinatorial atmospheric pressure chemical vapor deposition of graded TiO₂-VO₂ mixed-phase composites and their dual functional property as self-cleaning and photochromic window coatings. , 2013, ACS combinatorial science.

[177]  Y. Tokura,et al.  Infrared-sensitive electrochromic device based on VO2 , 2013 .

[178]  Ziyu Wu,et al.  Understanding the nature of the kinetic process in a VO2 metal-insulator transition. , 2010, Physical review letters.

[179]  D. Muller,et al.  Nature of the metal insulator transition in ultrathin epitaxial vanadium dioxide. , 2013, Nano letters.

[180]  J. Narayan,et al.  Defect-mediated room temperature ferromagnetism in vanadium dioxide thin films , 2009 .

[181]  Ping Jin,et al.  TiO2(R)/VO2(M)/TiO2(A) multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions , 2015 .

[182]  Kai Liu,et al.  Axially engineered metal-insulator phase transition by graded doping VO2 nanowires. , 2013, Journal of the American Chemical Society.

[183]  M. Es‐Souni,et al.  Nanostructured VO2 thin films via cathodic deposition , 2013 .

[184]  R. Haglund,et al.  Influence of deposition process and substrate on the phase transition of vanadium dioxide thin films , 2015 .

[185]  W. Chu,et al.  The Dynamic Phase Transition Modulation of Ion‐Liquid Gating VO2 Thin Film: Formation, Diffusion, and Recovery of Oxygen Vacancies , 2016 .

[186]  Xingzhong Zhao,et al.  Diminish the screen effect in field emission via patterned and selective edge growth of ZnO nanorod arrays , 2009 .

[187]  Xiujian Zhao,et al.  Thermochromic performances of tungsten-doping porous VO2 thin films , 2016, Journal of Sol-Gel Science and Technology.

[188]  David H. Cobden,et al.  Measurement of a solid-state triple point at the metal–insulator transition in VO2 , 2013, Nature.

[189]  S. Prokes,et al.  Tunable Electrical Properties of Vanadium Oxide by Hydrogen-Plasma-Treated Atomic Layer Deposition , 2017, ACS omega.

[190]  Zaiyao Fei,et al.  Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy. , 2012, Nature nanotechnology.

[191]  Carter S. Haines,et al.  Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of Hybrid Carbon Nanotube Yarn Muscles , 2012, Science.

[192]  Roman V. Kruzelecky,et al.  Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications , 2011 .

[193]  L. Fan,et al.  Infrared Response and Optoelectronic Memory Device Fabrication Based on Epitaxial VO2 Film. , 2016, ACS applied materials & interfaces.

[194]  Yi Xie,et al.  Hydrogen Treatment for Superparamagnetic VO2 Nanowires with Large Room-Temperature Magnetoresistance. , 2016, Angewandte Chemie.

[195]  Hidekazu Tanaka,et al.  Research Update: Nanoscale electrochemical transistors in correlated oxides , 2017 .

[196]  J C Grossman,et al.  Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. , 2009, Nature nanotechnology.

[197]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[198]  Kai Liu,et al.  Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. , 2012, Nano letters.

[199]  Richard F. Haglund,et al.  Optically-Triggered Nanoscale Memory Effect in a Hybrid Plasmonic-Phase Changing Nanostructure , 2015 .

[200]  Chenguo Hu,et al.  Room-temperature ferromagnetism properties of monoclinic VO2 (M1) nanobelts , 2014 .

[201]  Arun V. Thathachary,et al.  A steep-slope transistor based on abrupt electronic phase transition , 2015, Nature Communications.

[202]  G. Stucky,et al.  VO2(B) nanorods: solvothermal preparation, electrical properties, and conversion to rutile VO2 and V2O3 , 2009 .

[203]  Zhong‐Lin Wang,et al.  Strain‐Gated Piezotronic Logic Nanodevices , 2010, Advanced materials.

[204]  Yanfeng Gao,et al.  A multi-functional textile that combines self-cleaning, water-proofing and VO2-based temperature-responsive thermoregulating , 2017 .

[205]  Charles T Rettner,et al.  Subnanosecond incubation times for electric-field-induced metallization of a correlated electron oxide. , 2014, Nature nanotechnology.

[206]  Hanwei Gao,et al.  Distinguishing the Photothermal and Photoinjection Effects in Vanadium Dioxide Nanowires. , 2015, Nano letters.

[207]  S. Banerjee,et al.  Scalable hydrothermal synthesis of free-standing VO₂ nanowires in the M1 phase. , 2014, ACS applied materials & interfaces.

[208]  Chen Xu,et al.  Self‐heating and External Strain Coupling Induced Phase Transition of VO2 Nanobeam as Single Domain Switch , 2011, Advanced materials.

[209]  T. Do,et al.  Solvo-hydrothermal approach for the shape-selective synthesis of vanadium oxide nanocrystals and their characterization. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[210]  Shriram Ramanathan,et al.  Relaxation dynamics of ionic liquid—VO2 interfaces and influence in electric double-layer transistors , 2012 .

[211]  In Soo Kim,et al.  Extraordinary dynamic mechanical response of vanadium dioxide nanowires around the insulator to metal phase transition. , 2014, Nano letters.

[212]  L. Chua,et al.  Powerful, Multifunctional Torsional Micromuscles Activated by Phase Transition , 2014, Advanced materials.

[213]  Gokul Gopalakrishnan,et al.  Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer , 2010, 1006.4373.

[214]  H. Uhm,et al.  Preparation of vanadium pentoxide powders by microwave plasma-torch at atmospheric pressure , 2006 .

[215]  Hao Wu,et al.  Infrared response of self-heating VO2 nanoparticles film based on Ag nanowires heater , 2014 .

[216]  S. Ramanathan,et al.  Thermoelastic switching with controlled actuation in VO2 thin films , 2011 .

[217]  Emmanuelle Merced,et al.  A micro‐electro‐mechanical memory based on the structural phase transition of VO2 (Phys. Status Solidi A 9∕2013) , 2013 .

[218]  Pooi See Lee,et al.  Stretchable and wearable electrochromic devices. , 2014, ACS nano.

[219]  Roger Hanlon,et al.  Cephalopod dynamic camouflage , 2007, Current Biology.

[220]  C. Labrugère,et al.  Rapid hydrothermal synthesis of VO2 (B) and its conversion to thermochromic VO2 (M1). , 2013, Inorganic chemistry.

[221]  Young-soo Park,et al.  Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory , 2007 .

[222]  D. W. Sheel,et al.  The Growth of Thermochromic VO2 Films on Glass by Atmospheric‐Pressure CVD: A Comparative Study of Precursors, CVD Methodology, and Substrates , 2006 .

[223]  Xiaobo Tan,et al.  An Electrothermally Actuated VO2-Based MEMS Using Self-Sensing Feedback Control , 2015, Journal of Microelectromechanical Systems.

[224]  Litao Sun,et al.  Defect-mediated phase transition temperature of VO2 (M) nanoparticles with excellent thermochromic performance and low threshold voltage , 2014 .

[225]  Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications , 2017 .

[226]  Lin Xiao,et al.  Flexible, All-Inorganic Actuators Based on Vanadium Dioxide and Carbon Nanotube Bimorphs. , 2017, Nano letters.

[227]  Jin-Ming Chen,et al.  Competition between ferromagnetism and antiferromagnetism in the rutile Cr1−xVxO2 system , 2016 .

[228]  Hidekazu Tanaka,et al.  Programmable mechanical resonances in MEMS by localized joule heating of phase change materials. , 2013, Advanced materials.

[229]  Yanfeng Gao,et al.  Fine crystalline VO2 nanoparticles: synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil , 2014 .

[230]  D. Kang,et al.  Control of Multilevel Resistance in Vanadium Dioxide by Electric Field Using Hybrid Dielectrics. , 2017, ACS applied materials & interfaces.

[231]  Richard Vaia,et al.  Adaptive Composites , 2008, Science.

[232]  Ning Wang,et al.  Two-Dimensional SiO2/VO2 Photonic Crystals with Statically Visible and Dynamically Infrared Modulated for Smart Window Deployment. , 2016, ACS applied materials & interfaces.

[233]  Huihuo Zheng,et al.  Computation of the correlated metal-insulator transition in vanadium dioxide from first principles. , 2013, Physical review letters.

[234]  Claes-Göran Granqvist,et al.  Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation , 2010 .

[235]  J. Switzer,et al.  Resistance Switching in Electrodeposited VO2 Thin Films , 2011 .

[236]  Xin Zhang,et al.  Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial , 2012, Nature.

[237]  Thi Van Anh Nguyen,et al.  Discrimination between gate-induced electrostatic and electrochemical characteristics in insulator-to-metal transition of manganite thin films , 2015 .

[238]  W. H. Lam,et al.  Analytical methods to calculate performance of handoff prioritisation in dynamic channel assignment , 2001 .

[239]  Jing Wang,et al.  Thermochromic VO2 films from ammonium citrato-oxovanadate(IV) with excellent optical and phase transition properties , 2016 .

[240]  D. Cobden,et al.  New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. , 2009, Nature nanotechnology.

[241]  C. Granqvist Spectrally Selective Coatings for Energy Efficiency and Solar Applications , 1985 .

[242]  Fan Yang,et al.  Anomalously low electronic thermal conductivity in metallic vanadium dioxide , 2017, Science.

[243]  Yanfeng Gao,et al.  F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. , 2013, Physical chemistry chemical physics : PCCP.

[244]  Testing the Jacob's ladder of density functionals for electronic structure and magnetism of rutile VO 2 , 2014 .

[245]  Dongyuan Zhao,et al.  Controllable Fabrication of Two-Dimensional Patterned VO2 Nanoparticle, Nanodome, and Nanonet Arrays with Tunable Temperature-Dependent Localized Surface Plasmon Resonance. , 2017, ACS nano.