Lorentzian Distance Learning for Hyperbolic Representations
暂无分享,去创建一个
Renjie Liao | Richard S. Zemel | Jake Snell | Marc Teva Law | R. Zemel | Jake Snell | Renjie Liao | M. Law
[1] M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .
[2] Matthieu Cord,et al. Closed-Form Training of Mahalanobis Distance for Supervised Clustering , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[3] G. Gal'perin. A concept of the mass center of a system of material points in the constant curvature spaces , 1993 .
[4] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[5] H. Karcher,et al. How to conjugateC1-close group actions , 1973 .
[6] Thomas Hofmann,et al. Hyperbolic Neural Networks , 2018, NeurIPS.
[7] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2004 .
[8] Christopher De Sa,et al. Representation Tradeoffs for Hyperbolic Embeddings , 2018, ICML.
[9] Douwe Kiela,et al. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry , 2018, ICML.
[10] Christiane Fellbaum,et al. Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.
[11] D. Defays,et al. An Efficient Algorithm for a Complete Link Method , 1977, Comput. J..
[12] Vladimir Varicak. Beiträge zur nichteuklidischen Geometrie. , 1908 .
[13] A. Einstein. Zur Elektrodynamik bewegter Körper , 1905 .
[14] John M. Lee. Riemannian Manifolds: An Introduction to Curvature , 1997 .
[15] Alex Krizhevsky,et al. Learning Multiple Layers of Features from Tiny Images , 2009 .
[16] H. Karcher. Riemannian Center of Mass and so called karcher mean , 2014, 1407.2087.
[17] A. Ungar. Analytic Hyperbolic Geometry in N Dimensions: An Introduction , 2014 .
[18] Ke Sun,et al. Space-Time Local Embeddings , 2015, NIPS.
[19] A. Ungar. Barycentric calculus in euclidean and hyperbolic geometry: a comparative introduction , 2010 .
[20] Raquel Urtasun,et al. Dimensionality Reduction for Representing the Knowledge of Probabilistic Models , 2018, International Conference on Learning Representations.
[21] Douwe Kiela,et al. Poincaré Embeddings for Learning Hierarchical Representations , 2017, NIPS.
[22] Jian Cheng,et al. NormFace: L2 Hypersphere Embedding for Face Verification , 2017, ACM Multimedia.
[23] Yann Ollivier,et al. Riemannian metrics for neural networks I: feedforward networks , 2013, 1303.0818.
[24] F B ROGERS,et al. Medical Subject Headings , 1948, Nature.
[25] J. Ratcliffe. Foundations of Hyperbolic Manifolds , 2019, Graduate Texts in Mathematics.
[26] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[27] Zhixun Su,et al. Feature extraction by learning Lorentzian metric tensor and its extensions , 2010, Pattern Recognit..