Coupling Techniques for Reasoning about Quantum Programs

Relational verification of quantum programs has many potential applications in security and other domains. We propose a relational program logic for quantum programs. The interpretation of our logic is based on a quantum analogue of probabilistic couplings. We use our logic to verify non-trivial relational properties of quantum programs, including uniformity for samples generated by the quantum Bernoulli factory, reliability of quantum teleportation against noise (bit and phase flip), and equivalence of quantum random walks.

[1]  H. Thorisson Coupling, stationarity, and regeneration , 2000 .

[2]  Benjamin Grégoire,et al.  Proving expected sensitivity of probabilistic programs , 2017, Proc. ACM Program. Lang..

[3]  Andreas J. Winter,et al.  Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints , 2015, ArXiv.

[4]  David Jennings,et al.  Provable quantum advantage in randomness processing , 2015, Nature Communications.

[5]  Benjamin Grégoire,et al.  Relational Reasoning via Probabilistic Coupling , 2015, LPAR.

[6]  Dominique Unruh,et al.  2 Preliminaries : Variables , Memories , and Predicates , 2019 .

[7]  Prakash Panangaden,et al.  Quantum weakest preconditions , 2005, Mathematical Structures in Computer Science.

[8]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[9]  Kay Schwieger,et al.  Diagonal Couplings of Quantum Markov Chains , 2014 .

[10]  Benjamin Grégoire,et al.  Proving uniformity and independence by self-composition and coupling , 2017, LPAR.

[11]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[12]  T. Lindvall Lectures on the Coupling Method , 1992 .

[13]  Benjamin Grégoire,et al.  Formal certification of code-based cryptographic proofs , 2009, POPL '09.

[14]  Yuan Feng,et al.  Proof rules for the correctness of quantum programs , 2007, Theor. Comput. Sci..

[15]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[16]  Shaopeng Zhu,et al.  Quantitative Robustness Analysis of Quantum Programs (Extended Version) , 2018, ArXiv.

[17]  C. Villani Optimal Transport: Old and New , 2008 .

[18]  Yuan Feng,et al.  Verification of Quantum Programs , 2011, Sci. Comput. Program..

[19]  Li Zhou,et al.  Quantum Coupling and Strassen Theorem , 2018, ArXiv.

[20]  Dominique Unruh,et al.  Quantum relational Hoare logic , 2018, Proc. ACM Program. Lang..

[21]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[22]  Gilles Barthe,et al.  Probabilistic Relational Reasoning for Differential Privacy , 2012, TOPL.

[23]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[24]  George L. O'Brien,et al.  A Bernoulli factory , 1994, TOMC.

[25]  Benjamin Grégoire,et al.  Proving Differential Privacy via Probabilistic Couplings , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[26]  Hideki Sakurada,et al.  Automated Verification of Equivalence on Quantum Cryptographic Protocols , 2013, SCSS.

[27]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[28]  Mingsheng Ying,et al.  Floyd--hoare logic for quantum programs , 2011, TOPL.

[29]  Justin Hsu,et al.  Probabilistic Couplings for Probabilistic Reasoning , 2017, ArXiv.

[30]  Peter Selinger,et al.  A Brief Survey of Quantum Programming Languages , 2004, FLOPS.

[31]  Yuan Feng,et al.  Toward Automatic Verification of Quantum Cryptographic Protocols , 2015, CONCUR.

[32]  Rajagopal Nagarajan,et al.  Equivalence Checking of Quantum Protocols , 2013, TACAS.

[33]  V. Strassen The Existence of Probability Measures with Given Marginals , 1965 .

[34]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[35]  Rohit Chadha,et al.  Reasoning About Imperative Quantum Programs , 2006, MFPS.

[36]  V. S. Anil Kumar,et al.  Markovian coupling vs. conductance for the Jerrum-Sinclair chain , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[37]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[38]  Yoshihiko Kakutani,et al.  A Logic for Formal Verification of Quantum Programs , 2009, ASIAN.

[39]  Sevag Gharibian,et al.  Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..