High capacity terahertz communication systems based on multiple orbital-angular-momentum beams

Structured electromagnetic waves carrying orbital angular momentum (OAM) have been explored in various frequency regimes to enhance the data capacity of communication systems by multiplexing multiple co-propagating orthogonal OAM beams (i.e. mode-division multiplexing (MDM)). Terahertz (THz) communications in free space have gained interest as THz waves tend to have: (a) larger bandwidth and lower beam divergence than millimeter-waves, and (b) lower interaction with matter conditions than optical waves. In this paper, we review recent experimental demonstrations of OAM-based THz MDM communication systems, including (a) THz MDM system with two multiplexed OAM beams; (b) THz OAM multiplexing together with frequency-division-multiplexing and polarization-division-multiplexing; (c) multiplexing a full set of two-dimensional Laguerre–Gaussian ( LGℓ,p ) beams; and (d) THz integrated OAM emitter for OAM mode generation and multiplexing. System performance of THz OAM links with the effect of turbulence, divergence, and multipath is also simulated and analyzed.

[1]  A. Willner,et al.  A THz Integrated Circuit Based on a Pixel Array to Mode Multiplex Two 10-Gbit/s QPSK Channels Each on a Different OAM Beam , 2023, Journal of Lightwave Technology.

[2]  A. Willner,et al.  Receiver aperture and multipath effects on power loss and modal crosstalk in a THz wireless link using orbital-angular-momentum multiplexing , 2022, Scientific Reports.

[3]  M. Schell,et al.  Coherent Wireless Link at 300 GHz With 160 Gbit/s Enabled by a Photonic Transmitter , 2022, Journal of Lightwave Technology.

[4]  Xuemei Hu,et al.  Dual-color terahertz spatial light modulator for single-pixel imaging , 2022, Light: Science & Applications.

[5]  M. Tur,et al.  Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications. , 2022, Optics express.

[6]  M. Tur,et al.  Demonstration of turbulence mitigation in a 200-Gbit/s orbital-angular-momentum multiplexed free-space optical link using simple power measurements for determining the modal crosstalk matrix. , 2022, Optics letters.

[7]  Yijie Shen,et al.  Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications , 2022, Light, science & applications.

[8]  R. Schatz,et al.  Bridging the Terahertz Gap: Photonics-Assisted Free-Space Communications From the Submillimeter-Wave to the Mid-Infrared , 2022, Journal of Lightwave Technology.

[9]  A. Willner,et al.  Experimental Demonstration of Sub-THz Wireless Communications Using Multiplexing of Laguerre-Gaussian Beams When Varying two Different Modal Indices , 2022, Journal of Lightwave Technology.

[10]  Mohamed I. Ibrahim,et al.  A 0.31-THz Orbital-Angular-Momentum (OAM) Wave Transceiver in CMOS With Bits-to-OAM Mode Mapping , 2022, IEEE Journal of Solid-State Circuits.

[11]  S. Xiao,et al.  Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications , 2022, Nature Communications.

[12]  C. Chan,et al.  Millimeter-Wave and Terahertz OAM Discrete-Lens Antennas for 5G and Beyond , 2022, IEEE Communications Magazine.

[13]  A. Willner,et al.  Orbital angular momentum of light for communications , 2021, Applied Physics Reviews.

[14]  Maxime Irene Dedo,et al.  Improving the demultiplexing performances of the multiple Bessel Gaussian beams (mBGBs) , 2021, Results in Physics.

[15]  A. Forbes,et al.  Revealing the invariance of vectorial structured light in complex media , 2021, Nature Photonics.

[16]  Huibin Zhou,et al.  Modal Purity and LG Coupling of an OAM Beam Reflected by a Rough Surface for NLoS THz Links , 2021, 2021 IEEE International Conference on Communications Workshops (ICC Workshops).

[17]  A. Willner OAM Light for Communications , 2021 .

[18]  W. He,et al.  Terahertz orbital angular momentum: Generation, detection and communication , 2021, China Communications.

[19]  Jie Li,et al.  All‐Dielectric Metasurface for Manipulating the Superpositions of Orbital Angular Momentum via Spin‐Decoupling , 2021, Advanced Optical Materials.

[20]  A. Willner,et al.  Modal coupling and crosstalk due to turbulence and divergence on free space THz links using multiple orbital angular momentum beams , 2021, Scientific Reports.

[21]  B. Globisch,et al.  Beam Profile Characterisation of an Optoelectronic Silicon Lens-Integrated PIN-PD Emitter between 100 GHz and 1 THz , 2021 .

[22]  T. Nagatsuma,et al.  Unclad Microphotonics for Terahertz Waveguides and Systems , 2020, Journal of Lightwave Technology.

[23]  Doohwan Lee,et al.  Hybrid OAM Multiplexing using Butler Matrices toward over 100 Gbit/s Wireless Transmission , 2020, 2020 IEEE Globecom Workshops (GC Wkshps.

[24]  Kaushik Sengupta,et al.  A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips , 2020, Nature Electronics.

[25]  A. Willner,et al.  Experimental mitigation of the effects of the limited size aperture or misalignment by singular-value-decomposition-based beam orthogonalization in a free-space optical link using Laguerre-Gaussian modes. , 2020, Optics letters.

[26]  Shi Jia,et al.  Beyond 100 Gb/s Optoelectronic Terahertz Communications: Key Technologies and Directions , 2020, IEEE Communications Magazine.

[27]  Mohamed-Slim Alouini,et al.  Roadmap to free space optics , 2020, Journal of the Optical Society of America B.

[28]  Mohamed-Slim Alouini,et al.  Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems , 2019, IEEE Open Journal of the Communications Society.

[29]  S. Randel,et al.  Generalized Kramers–Kronig receiver for coherent terahertz communications , 2019, Nature Photonics.

[30]  Saulius Juodkazis,et al.  Dielectric cross-shaped-resonator-based metasurface for vortex beam generation at mid-IR and THz wavelengths , 2019, Nanophotonics.

[31]  George S. Tombras,et al.  Performance Analysis of Hard-Switching Based Hybrid FSO/RF System over Turbulence Channels , 2019, Comput..

[32]  Maxime Irene Dedo,et al.  Retrieving Performances of Vortex Beams with GS Algorithm after Transmitting in Different Types of Turbulences , 2019, Applied Sciences.

[33]  Lei Gong,et al.  Optical orbital-angular-momentum-multiplexed data transmission under high scattering , 2019, Light: Science & Applications.

[34]  Tadao Nagatsuma,et al.  Terahertz integrated electronic and hybrid electronic–photonic systems , 2018, Nature Electronics.

[35]  Siyuan Yu,et al.  Orbital angular momentum vector modes (de)multiplexer based on multimode micro-ring. , 2018, Optics express.

[36]  Moshe Tur,et al.  400-Gbit/s QPSK free-space optical communicationlink based on four-fold multiplexing of Hermite-Gaussian or Laguerre-Gaussian modes by varying both modal indices. , 2018, Optics letters.

[37]  Hong Wang,et al.  Ultra-broadband on-chip twisted light emitter for optical communications , 2018, Light: Science & Applications.

[38]  A. Willner,et al.  Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives , 2018 .

[39]  Toshio Morioka,et al.  0.4 THz Photonic-Wireless Link With 106 Gb/s Single Channel Bitrate , 2018, Journal of Lightwave Technology.

[40]  Xin-Ke Wang,et al.  Demonstration of Orbital Angular Momentum Multiplexing and Demultiplexing Based on a Metasurface in the Terahertz Band , 2017 .

[41]  Y. Wang,et al.  High-speed acoustic communication by multiplexing orbital angular momentum , 2017, Proceedings of the National Academy of Sciences.

[42]  A. Willner,et al.  Spatial light structuring using a combination of multiple orthogonal orbital angular momentum beams with complex coefficients. , 2017, Optics letters.

[43]  Toshio Morioka,et al.  160 Gbit/s photonics wireless transmission in the 300-500 GHz band , 2016 .

[44]  Francesco Da Ros,et al.  THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band. , 2016, Optics express.

[45]  Francesco Da Ros,et al.  260 Gbit/s photonic-wireless link in the THz band , 2016, 2016 IEEE Photonics Conference (IPC).

[46]  A. Willner,et al.  Multipath Effects in Millimetre-Wave Wireless Communication using Orbital Angular Momentum Multiplexing , 2016, Scientific Reports.

[47]  Matteo Oldoni,et al.  Radio channel multiplexing with superpositions of opposite-sign OAM modes , 2016 .

[48]  Moshe Tur,et al.  Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices. , 2016, Optics letters.

[49]  A. Zeilinger,et al.  Twisted light transmission over 143 km , 2016, Proceedings of the National Academy of Sciences.

[50]  Yinwen Cao,et al.  Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization. , 2016, Optics letters.

[51]  Cyril C. Renaud,et al.  Advances in terahertz communications accelerated by photonics , 2016, Nature Photonics.

[52]  Wenfeng Sun,et al.  Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations. , 2016, Optics express.

[53]  David J. Ives,et al.  On the Impact of Optimal Modulation and FEC Overhead on Future Optical Networks , 2015, Journal of Lightwave Technology.

[54]  A. Willner,et al.  Performance metrics and design considerations for a free-space optical orbital-angular-momentum–multiplexed communication link , 2015 .

[55]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[56]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[57]  A. Willner,et al.  High-capacity millimetre-wave communications with orbital angular momentum multiplexing , 2014, Nature Communications.

[58]  Koji Suizu,et al.  Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate , 2014 .

[59]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[60]  Peter J. Schemmel,et al.  Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths. , 2014, Optics express.

[61]  Jian Wang,et al.  Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications , 2014, OFC 2014.

[62]  Bruno Maffei,et al.  Three-dimensional measurements of a millimeter wave orbital angular momentum vortex. , 2014, Optics letters.

[63]  A. Willner,et al.  100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. , 2014, Optics letters.

[64]  Nicolas K Fontaine,et al.  Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. , 2014, Optics express.

[65]  A. Willner,et al.  Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. , 2013, Optics letters.

[66]  T. Zwick,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[67]  Jun Terada,et al.  Terahertz wireless communications based on photonics technologies. , 2013, Optics express.

[68]  E. Santamato,et al.  Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. , 2013, Optics letters.

[69]  Xin-Ke Wang,et al.  Generation and evolution of the terahertz vortex beam. , 2013, Optics express.

[70]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[71]  Daniel Flamm,et al.  Beam-quality measurements using a spatial light modulator. , 2012, Optics letters.

[72]  Lothar Moeller,et al.  Experimental comparison of terahertz and infrared data signal attenuation in dust clouds. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[73]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[74]  D. J. Geisler,et al.  Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. , 2012, Optics express.

[75]  van der Jjgm Jos Tol,et al.  Moore's law in photonics , 2012 .

[76]  Suresh Subramaniam,et al.  Optimal Placement of FSO Links in Hybrid Wireless Optical Networks , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[77]  B. Thid'e,et al.  Encoding many channels on the same frequency through radio vorticity: first experimental test , 2011, 1107.2348.

[78]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[79]  J. P. Woerdman,et al.  How orbital angular momentum affects beam shifts in optical reflection , 2010, 1003.0885.

[80]  R. Boyd,et al.  Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. , 2009, Optics letters.

[81]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[82]  Yeon H. Lee,et al.  Hermite–Gaussian and Laguerre–Gaussian beams beyond the paraxial approximation , 1999 .

[83]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[84]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[85]  L C Andrews,et al.  Spot size and divergence for Laguerre Gaussian beams of any order. , 1983, Applied optics.

[86]  Mustafa Alper Akkas,et al.  Terahertz wireless data communication , 2019, Wirel. Networks.

[87]  Minggui Wei,et al.  Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime , 2018 .

[88]  Moshe Tur,et al.  Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre-Gaussian beams , 2017 .

[89]  M. Winter,et al.  Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats , 2012, IEEE Photonics Technology Letters.

[90]  Mark R. Dennis,et al.  Singular optics: optical vortices and polarization singularities , 2009 .

[91]  Naoya Matsumoto,et al.  Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators. , 2009, Optics letters.

[92]  A. E. Siegman,et al.  How to (Maybe) Measure Laser Beam Quality , 1998 .