Essential Roles of Proton Transfer in Photocatalytic Redox Reactions

Nowadays, semiconductor‐based heterogeneous photocatalysis is receiving much more attention than ever before owing to the increasing challenge of environmental pollution and worldwide demand for clean energy. The stoichiometry of the photocatalytic reactions usually includes the simultaneous gain or loss of electrons and protons. However, not enough emphasis has been placed on the effect of proton transfer on the photocatalytic reactions, particularly on the kinetics of interfacial redox steps. In this article, we highlight the effects of proton on the interfacial electron transfer during the photocatalytic redox reactions. We try to emphasize that the proton transfer can largely determine the energetic profile and reaction pathway by participating in the interfacial redox reactions. Better understanding on the roles and the detailed mechanisms of proton transfer in the photocatalytic surface reactions is required for the further improvement of photocatalytic efficiency.

[1]  U. Diebold,et al.  Experimental Investigation of the Interaction of Water and Methanol with Anatase−TiO2(101) , 2003 .

[2]  Jinlong Yang,et al.  Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2(110)-1 × 1 surface. , 2012, Journal of the American Chemical Society.

[3]  G. Kroes,et al.  First principles study of the photo-oxidation of water on tungsten trioxide (WO3). , 2009, The Journal of chemical physics.

[4]  G. Boschloo,et al.  Spectroelectrochemical Investigation of Surface States in Nanostructured TiO2 Electrodes , 1999 .

[5]  S. Hammes-Schiffer,et al.  Theory of coupled electron and proton transfer reactions. , 2010, Chemical reviews.

[6]  David N. Beratan,et al.  Biochemistry and Theory of Proton-Coupled Electron Transfer , 2014, Chemical reviews.

[7]  Chunyan Sun,et al.  TiO2-mediated photocatalytic debromination of decabromodiphenyl ether: kinetics and intermediates. , 2009, Environmental science & technology.

[8]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[9]  S. Zhang,et al.  Photo-oxidation of polyhydroxyl molecules on TiO2 surfaces: from hole scavenging to light-induced self-assembly of TiO2-cyclodextrin wires. , 2007, Physical review letters.

[10]  B. Wang,et al.  A Comparative Theoretical Study of Proton-Coupled Hole Transfer for H2O and Small Organic Molecules (CH3OH, HCOOH, H2CO) on the Anatase TiO2(101) Surface , 2014 .

[11]  A. Selloni,et al.  Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase. , 2013, Journal of the American Chemical Society.

[12]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[13]  Donald Fitzmaurice,et al.  ELECTRON ACCUMULATION IN NANOSTRUCTURED TIO2 (ANATASE) ELECTRODES , 1999 .

[14]  H. Kisch Halbleiterphotokatalyse – mechanistische und präparative Aspekte , 2013 .

[15]  Juan Bisquert,et al.  Water oxidation at hematite photoelectrodes: the role of surface states. , 2012, Journal of the American Chemical Society.

[16]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[17]  P. Kent,et al.  Hydrogen Bonds and Vibrations of Water on (110) Rutile , 2009 .

[18]  J. Nørskov,et al.  Oxidation and Photo-Oxidation of Water on TiO2 Surface , 2008 .

[19]  Zhi-Pan Liu,et al.  Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. , 2010, Journal of the American Chemical Society.

[20]  A. Selloni,et al.  Vertical and lateral order in adsorbed water layers on anatase TiO2(101). , 2004, Langmuir : the ACS journal of surfaces and colloids.

[21]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[22]  Donald Fitzmaurice,et al.  Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents , 1993 .

[23]  Hongwei Ji,et al.  Photocatalytic degradation of organic pollutants on surface anionized TiO2: Common effect of anions for high hole-availability by water , 2013 .

[24]  Araceli G. Campaña,et al.  Understanding the exceptional hydrogen-atom donor characteristics of water in Ti(III)-mediated free-radical chemistry. , 2010, Journal of the American Chemical Society.

[25]  Zhibo Ma,et al.  Stepwise photocatalytic dissociation of methanol and water on TiO2(110). , 2012, Journal of the American Chemical Society.

[26]  H. Kisch Semiconductor photocatalysis--mechanistic and synthetic aspects. , 2013, Angewandte Chemie.

[27]  Y. Tateyama,et al.  Interface Water on TiO2 Anatase (101) and (001) Surfaces: First-Principles Study with TiO2 Slabs Dipped in Bulk Water , 2010 .

[28]  Hongwei Ji,et al.  Direct four-electron reduction of O2 to H2O on TiO2 surfaces by pendant proton relay. , 2013, Angewandte Chemie.

[29]  H. Petek,et al.  Ultrafast interfacial proton-coupled electron transfer. , 2010, Chemical reviews.

[30]  James M. Mayer,et al.  Titanium and Zinc Oxide Nanoparticles Are Proton-Coupled Electron Transfer Agents , 2012, Science.

[31]  T. Meyer,et al.  Proton-coupled electron transfer. , 2007, Chemical reviews.

[32]  B. Wang,et al.  Location of Trapped Hole on Rutile-TiO2(110) Surface and Its Role in Water Oxidation , 2012 .

[33]  Arthur J. Nozik,et al.  Physical Chemistry of Semiconductor−Liquid Interfaces , 1996 .

[34]  N. A. Deskins,et al.  Two pathways for water interaction with oxygen adatoms on TiO2(110). , 2009, Physical review letters.

[35]  N. Dimitrijević,et al.  Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. , 2011, Journal of the American Chemical Society.

[36]  Beniamino Iandolo,et al.  The role of surface States in the oxygen evolution reaction on hematite. , 2014, Angewandte Chemie.

[37]  Chuncheng Chen,et al.  Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. , 2010, Chemical Society reviews.

[38]  Zhibo Ma,et al.  Photocatalytic Dissociation of Ethanol on TiO2(110) by Near-Band-Gap Excitation , 2013 .

[39]  Donald Fitzmaurice,et al.  Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in mixed solvent systems , 1994 .

[40]  Li Wang,et al.  Water-mediated promotion of dye sensitization of TiO2 under visible light. , 2011, Journal of the American Chemical Society.

[41]  J. Hupp,et al.  Energetics of the Nanocrystalline Titanium Dioxide/Aqueous Solution Interface: Approximate Conduction Band Edge Variations between H0 = −10 and H- = +26 , 1999 .

[42]  Chuncheng Chen,et al.  Selective aerobic oxidation mediated by TiO(2) photocatalysis. , 2014, Accounts of chemical research.

[43]  Y. Nakato,et al.  Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH. , 2007, Journal of the American Chemical Society.

[44]  Jinlong Yang,et al.  Theoretical study of the molecular and electronic structure of methanol on a TiO2(110) surface , 2009 .

[45]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[46]  Chuncheng Chen,et al.  Photocatalytic aerobic oxidation of alcohols on TiO2: the acceleration effect of a Brønsted acid. , 2010, Angewandte Chemie.

[47]  Chuncheng Chen,et al.  Surface Modification of TiO2 by Phosphate: Effect on Photocatalytic Activity and Mechanism Implication , 2008 .

[48]  Carolyn N. Valdez,et al.  Effect of protons on the redox chemistry of colloidal zinc oxide nanocrystals. , 2013, Journal of the American Chemical Society.

[49]  A. Yamaguchi,et al.  Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH , 2014, Nature Communications.

[50]  J. VandeVondele,et al.  Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO₂. , 2014, Angewandte Chemie.