Introduction to Supersymmetric Theory of Stochastics

Many natural and engineered dynamical systems, including all living objects, exhibit signatures of what can be called spontaneous dynamical long-range order (DLRO). This order's omnipresence has long been recognized by the scientific community, as evidenced by a myriad of related concepts, theoretical and phenomenological frameworks, and experimental phenomena such as turbulence, $1/f$ noise, dynamical complexity, chaos and the butterfly effect, the Richter scale for earthquakes and the scale-free statistics of other sudden processes, self-organization and pattern formation, self-organized criticality, etc. Although several successful approaches to various realizations of DLRO have been established, the universal theoretical understanding of this phenomenon remained elusive. The possibility of constructing a unified theory of DLRO has emerged recently within the approximation-free supersymmetric theory of stochastics (STS). There, DLRO is the spontaneous breakdown of the topological or de Rham supersymmetry that all stochastic differential equations (SDEs) possess. This theory may be interesting to researchers with very different backgrounds because the ubiquitous DLRO is a truly interdisciplinary entity. The STS is also an interdisciplinary construction. This theory is based on dynamical systems theory, cohomological field theories, the theory of pseudo-Hermitian operators, and the conventional theory of SDEs. Reviewing the literature on all these mathematical disciplines can be time-consuming. As such, a concise and self-contained introduction to the STS, the goal of this paper, may be useful.

[1]  M. Esposito,et al.  Transient fluctuation theorems for the currents and initial equilibrium ensembles , 2014, 1408.5941.

[2]  Sh. Kogan,et al.  Electronic noise and fluctuations in solids , 1996 .

[3]  Cumrun Vafa,et al.  Mirror Symmetry , 2000, hep-th/0002222.

[4]  S. Mandt,et al.  Stochastic differential equations for quantum dynamics of spin-boson networks , 2014, 1410.3142.

[5]  I. Ovchinnikov Self-organized criticality as Witten-type topological field theory with spontaneously broken Becchi-Rouet-Stora-Tyutin symmetry. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Critical behaviour in a model of stationary flow and supersymmetry breaking , 1986 .

[7]  A LOWER-BOUND FOR THE NUMBER OF PERIODIC CLASSICAL TRAJECTORIES , 1995 .

[8]  Magnetic turbulence in cool cores of galaxy clusters , 2006 .

[9]  B. Altaner Foundations of Stochastic Thermodynamics , 2014, 1410.3983.

[10]  Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.

[11]  Jeremy Bloxham,et al.  An Earth-like numerical dynamo model , 1997, Nature.

[12]  Universal hidden supersymmetry in classical mechanics and its local extension , 1997, hep-th/9703203.

[13]  F. M. Fern Strong-coupling expansions for thePT -symmetric oscillators V.x/Da.ix/Cb.ix/ 2 Cc.ix/ 3 , 1998 .

[14]  E. Gozzi Onsager principle of microscopic reversibility and supersymmetry , 1984 .

[15]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .

[16]  E. Gozzi,et al.  Algebraic Characterization of Ergodicity , 1989 .

[17]  Kramers Equation and Supersymmetry , 2005, cond-mat/0503545.

[18]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[19]  Leon Bieber,et al.  Chaos In Systems With Noise , 2016 .

[20]  K. Intriligator,et al.  Lectures on supersymmetry breaking , 2007, hep-ph/0702069.

[21]  Adilson E. Motter,et al.  Chaos at fifty , 2013, 1306.5777.

[22]  Maximilian Kreuzer,et al.  Geometry, Topology and Physics I , 2009 .

[23]  I. Singer,et al.  The topological sigma model , 1989 .

[24]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[25]  I. T. Drummond,et al.  Stochastic processes, slaves and supersymmetry , 2012 .

[26]  R. L. Stratonovich A New Representation for Stochastic Integrals and Equations , 1966 .

[27]  E. Gozzi,et al.  Hilbert Space Structure in Classical Mechanics: (II) , 2002 .

[28]  Simone Schweitzer,et al.  Pattern Formation An Introduction To Methods , 2016 .

[29]  L. Baulieu Stochastic and Topological Gauge Theories , 1989 .

[30]  L. Girardello,et al.  A supersymmetry anomaly and the fermionic string , 1984 .

[31]  A. Mostafazadeh Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries , 2002, math-ph/0203005.

[32]  P. Gaspard Time-Reversed Dynamical Entropy and Irreversibility in Markovian Random Processes , 2004 .

[33]  Jorge Kurchan,et al.  Supersymmetry in spin glass dynamics , 1992 .

[34]  E. Gozzi,et al.  Classical mechanics as a topological field theory , 1990 .

[35]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[36]  Edward Witten,et al.  Topological quantum field theory , 1988 .

[37]  Jürgen Kurths,et al.  Complex Dynamics in Physiological Systems: From Heart to Brain , 2009 .

[38]  Stochastic and Non-Stochastic Supersymmetry , 1993 .

[39]  L. Arnold Stochastic Differential Equations: Theory and Applications , 1992 .

[40]  Andrew Jackson,et al.  An optimal Galerkin scheme to solve the kinematic dynamo eigenvalue problem in a full sphere , 2010, J. Comput. Phys..

[41]  Field theory of self-organization , 2003 .

[42]  Igor V. Ovchinnikov,et al.  Kinematic dynamo, supersymmetry breaking, and chaos , 2016 .

[43]  Igor V Ovchinnikov Topological field theory of dynamical systems. II. , 2013, Chaos.

[44]  J. S. Wettlaufer,et al.  On the interpretation of Stratonovich calculus , 2014, 1402.6895.

[45]  Min Qian,et al.  Stochastic flows of diffeomorphisms , 1995 .

[46]  A. Mostafazadeh Pseudo-Hermitian quantum mechanics with unbounded metric operators , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  L. Baulieu,et al.  A Topological Interpretation of Stochastic Quantization , 1988 .

[48]  Giorgio Parisi,et al.  Random Magnetic Fields, Supersymmetry, and Negative Dimensions , 1979 .

[49]  Chaotic properties of systems with Markov dynamics. , 2005, Physical review letters.

[50]  Anthony Manning,et al.  Topological Entropy and the First Homology Group , 1975 .

[51]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[52]  V. Gritsev,et al.  Dynamical symmetry approach and topological field theory for path integrals of quantum spin systems , 2013, 1307.2287.

[53]  Adi R. Bulsara,et al.  Stochastic processes with non-additive fluctuations: II. Some applications of Itô and Stratonovich calculus , 1979 .

[54]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[55]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[56]  T. Ensslin,et al.  Magnetic turbulence in cool cores of galaxy clusters , 2005, astro-ph/0505517.

[57]  L. Girardello,et al.  Stochastic and parastochastic aspects of supersymmetric functional measures: A new non-perturbative approach to supersymmetry , 1983 .

[58]  Igor V. Ovchinnikov,et al.  Supersymmetric Theory of Stochastics: Demystification of Self-Organized Criticality , 2016 .

[59]  E. Frenkel,et al.  Notes on instantons in topological field theory and beyond , 2007 .

[60]  A. Mostafazadeh Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001, math-ph/0107001.

[61]  Jose M. F. Labastida,et al.  Morse theory interpretation of topological quantum field theories , 1989 .

[62]  M. Polettini Generally covariant state-dependent diffusion , 2012, 1206.2798.

[63]  Topological field theory of dynamical systems. , 2012, Chaos.

[64]  I. Ovchinnikov Transfer operators and topological field theory , 2013, 1308.4222.

[65]  C. Hofman Topological Field Theory , 1998 .

[66]  Patrick Dorey,et al.  The ODE/IM Correspondence and PT -Symmetric Quantum Mechanics , 2002, hep-th/0201108.

[67]  N=2 supersymmetric quantum mechanics on Riemann surfaces with meromorphic superpotentials , 1994 .

[68]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[69]  Sergei V. Shabanov,et al.  Supersymmetry in stochastic processes with higher-order time derivatives , 1997 .

[70]  G. Teschl Ordinary Differential Equations and Dynamical Systems , 2012 .

[71]  Early chaos theory , 2014 .

[72]  Paolo Muratore-Ginanneschi Path integration over closed loops and Gutzwiller's trace formula , 2002, nlin/0210047.

[73]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[74]  B. Gutenberg,et al.  Magnitude and Energy of Earthquakes , 1936, Nature.

[75]  Complex periodic potentials with real band spectra , 1998, cond-mat/9810369.

[76]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[77]  D. Ruelle Turbulence, strange attractors, and chaos , 1995 .

[78]  Edward Witten,et al.  Topological sigma models , 1988 .

[79]  F. Krause,et al.  The Inverse Scattering Transformation and the Theory of Solitons. By W. ECKHAUS and A. VAN HARTEN. North-Holland, 1981. 222pp. $31.75. , 1982, Journal of Fluid Mechanics.

[80]  E. Gozzi,et al.  On the ``Universal'' N=2 Supersymmetry of Classical Mechanics , 2001 .

[81]  The Fluctuation Theorem as a Gibbs Property , 1998, math-ph/9812015.

[82]  E. Gozzi,et al.  Lyapunov exponents, path-integrals and forms , 1994 .

[83]  Dung Nguyen Tien A stochastic Ginzburg–Landau equation with impulsive effects , 2013 .

[84]  Some properties of eigenvalues and eigenfunctions of the cubic oscillator with imaginary coupling constant , 2000, quant-ph/0002056.

[85]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[86]  N. G. van Kampen,et al.  Itô versus Stratonovich , 1981 .

[87]  R. Gilmore Topological analysis of chaotic dynamical systems , 1998 .

[88]  H. Nicolai Supersymmetry and functional integration measures , 1980 .

[89]  Pierre Gaspard,et al.  Erratum: Time-Reversed Dynamical Entropy and Irreversibility in Markovian Random Processes , 2004 .

[90]  Miloslav Znojil,et al.  Strong-coupling expansions for the -symmetric oscillators , 1998 .

[91]  D. Orlando,et al.  Relating Field Theories via Stochastic Quantization , 2009, 0903.0732.

[92]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[93]  J. Zinn-Justin Renormalization and Stochastic Quantization , 1986 .

[94]  A. Losev,et al.  Topological quantum mechanics for physicists , 2005 .

[95]  T C Lubensky,et al.  State-dependent diffusion: Thermodynamic consistency and its path integral formulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[96]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[97]  E. Wong,et al.  On the Convergence of Ordinary Integrals to Stochastic Integrals , 1965 .

[98]  A. Nelson Dynamical Breaking of Supersymmetry , 2008 .

[99]  Yvonne Jaeger,et al.  Turbulence: An Introduction for Scientists and Engineers , 2015 .

[100]  T. Musha,et al.  1/f fluctuations in biological systems , 1997, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136).

[101]  Kiyosi Itô 109. Stochastic Integral , 1944 .

[102]  M. Aschwanden,et al.  Self-Organized Criticality in Astrophysics: The Statistics of Nonlinear Processes in the Universe , 2011 .

[103]  Kristian Kirsch,et al.  Theory Of Ordinary Differential Equations , 2016 .

[104]  John M. Beggs,et al.  Behavioral / Systems / Cognitive Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures , 2004 .

[105]  L. Arnold Random Dynamical Systems , 2003 .

[106]  H. Stanley,et al.  Switching processes in financial markets , 2011, Proceedings of the National Academy of Sciences.

[107]  A. Mostafazadeh Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians , 2002, math-ph/0203041.

[108]  E. Witten Supersymmetry and Morse theory , 1982 .

[109]  S. Shreve Stochastic calculus for finance , 2004 .

[110]  G. Winkler,et al.  The Stochastic Integral , 1990 .

[111]  J. Lykken,et al.  The Soft supersymmetry breaking Lagrangian: Theory and applications , 2005 .

[112]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[113]  Fluctuation relation, fluctuation theorem, thermostats and entropy creation in nonequilibrium statistical physics , 2006, cond-mat/0612061.

[114]  David Ruelle,et al.  Dynamical Zeta Functions and Transfer Operators , 2002 .

[115]  Adi R. Bulsara,et al.  Stochastic processes with non-additive fluctuations , 1979 .

[116]  R. Beck Magnetism in the spiral galaxy NGC 6946: magnetic arms, depolarization rings, dynamo modes, and helical fields , 2007, 0705.4163.

[117]  M. Browning Simulations of Dynamo Action in Fully Convective Stars , 2007, 0712.1603.

[118]  G. Parisi,et al.  Supersymmetric field theories and stochastic differential equations , 1982 .

[119]  H. Nicolai On a new characterization of scalar supersymmetric theories , 1980 .

[120]  C. Gheller,et al.  On the amplification of magnetic fields in cosmic filaments and galaxy clusters , 2014, 1409.2640.