A D.C. Algorithm via Convex Analysis Approach for Solving a Location Problem Involving Sets

We study a location problem that involves a weighted sum of distances to closed convex sets. As several of the weights might be negative, traditional solution methods of convex optimization are not applicable. After obtaining some existence theorems, we introduce a simple, but effective, algorithm for solving the problem. Our method is based on the Pham Dinh - Le Thi algorithm for d.c. programming and a generalized version of the Weiszfeld algorithm, which works well for convex location problems.

[1]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[2]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[3]  James G. Morris,et al.  Technical Note - Minisum Ip Distance Location Problems Solved via a Perturbed Problem and Weiszfeld's Algorithm , 1979, Oper. Res..

[4]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[5]  Ulrich Eckhardt,et al.  Weber's problem and weiszfeld's algorithm in general spaces , 1980, Math. Program..

[6]  L. Cooper,et al.  The Weber problem revisited , 1981 .

[7]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[8]  M. Shirosaki Another proof of the defect relation for moving targets , 1991 .

[9]  B. Jaumard,et al.  WEBER'S PROBLEM WITH ATTRACTION AND REPULSION , 1991 .

[10]  Jack Brimberg,et al.  The Fermat—Weber location problem revisited , 1995, Math. Program..

[11]  T. P. Dinh,et al.  Convex analysis approach to d.c. programming: Theory, Algorithm and Applications , 1997 .

[12]  Le Thi Hoai An,et al.  A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..

[13]  Jack Brimberg,et al.  Accelerating convergence in the Fermat-Weber location problem , 1998, Oper. Res. Lett..

[14]  R. Love,et al.  The convergence of the Weiszfeld algorithm , 2000 .

[15]  Cun-Hui Zhang,et al.  A modified Weiszfeld algorithm for the Fermat-Weber location problem , 2001, Math. Program..

[16]  A. Ruszczynski,et al.  Nonlinear Optimization , 2006 .

[17]  Frank Plastria,et al.  On the point for which the sum of the distances to n given points is minimum , 2009, Ann. Oper. Res..

[18]  Zvi Drezner,et al.  On the convergence of the generalized Weiszfeld algorithm , 2009, Ann. Oper. Res..

[19]  B. Mordukhovich,et al.  Applications of variational analysis to a generalized Heron problem , 2011, 1106.0088.

[20]  F. Plastria The Weiszfeld Algorithm: Proof, Amendments, and Extensions , 2011 .

[21]  Boris S. Mordukhovich,et al.  Applications of Variational Analysis to a Generalized Fermat-Torricelli Problem , 2011, J. Optim. Theory Appl..

[22]  N. M. Nam,et al.  A Generalized Sylvester Problem and a Generalized Fermat-Torricelli Problem , 2012, 1203.3200.

[23]  Hua Zhou,et al.  Distance majorization and its applications , 2012, Mathematical Programming.

[24]  Diethard Pallaschke,et al.  An easy path to convex analysis and applications , 2016 .