Enhancing Differential Evolution frameworks by scale factor local search - Part I

This paper proposes a modification of Differential Evolution (DE) schemes. During the offspring generation, a local search is applied, with a certain probability to the scale factor in order to generate an offspring with high performance. In a memetic fashion, the main idea in this paper is that the application of a different perspective in the search of a DE can assist the evolutionary framework and prevent the undesired effect of stagnation which DE is subject to. Two local search algorithms have been tested for this purpose and an application to the individual with the best performance has been proposed. The resulting algorithms seem to significantly enhance the performance of a standard DE scheme over a broad set of test problems. Numerical results show that the modified algorithm is very efficient with respect to a standard DE in terms of final solution detected, convergence speed and robustness.

[1]  M. Montaz Ali,et al.  Population set-based global optimization algorithms: some modifications and numerical studies , 2004, Comput. Oper. Res..

[2]  Jouni Lampinen,et al.  A Trigonometric Mutation Operation to Differential Evolution , 2003, J. Glob. Optim..

[3]  M.M.A. Salama,et al.  Opposition-Based Differential Evolution , 2008, IEEE Transactions on Evolutionary Computation.

[4]  A. Kai Qin,et al.  Self-adaptive differential evolution algorithm for numerical optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[5]  Jason Teo,et al.  Exploring dynamic self-adaptive populations in differential evolution , 2006, Soft Comput..

[6]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[7]  J. Kiefer,et al.  Sequential minimax search for a maximum , 1953 .

[8]  Hitoshi Iba,et al.  Enhancing differential evolution performance with local search for high dimensional function optimization , 2005, GECCO '05.

[9]  Francisco Herrera,et al.  Real-Coded Memetic Algorithms with Crossover Hill-Climbing , 2004, Evolutionary Computation.

[10]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[11]  Amit Konar,et al.  Two improved differential evolution schemes for faster global search , 2005, GECCO '05.

[12]  Vitaliy Feoktistov,et al.  Differential Evolution: In Search of Solutions (Springer Optimization and Its Applications) , 2006 .

[13]  Karl-Dirk Kammeyer,et al.  Parameter Study for Differential Evolution Using a Power Allocation Problem Including Interference Cancellation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[14]  T. Rogalsky,et al.  HYBRIDIZATION OF DIFFERENTIAL EVOLUTION FOR AERODYNAMIC DESIGN , 2000 .

[15]  A. Kai Qin,et al.  Self-adaptive Differential Evolution Algorithm for Constrained Real-Parameter Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[16]  Janez Brest,et al.  Self-Adaptive Differential Evolution Algorithm in Constrained Real-Parameter Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[17]  Ville Tirronen,et al.  An Enhanced Memetic Differential Evolution in Filter Design for Defect Detection in Paper Production , 2008, Evolutionary Computation.

[18]  Janez Brest,et al.  Large Scale Global Optimization using Differential Evolution with self-adaptation and cooperative co-evolution , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[19]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[20]  Vitaliy Feoktistov Differential Evolution: In Search of Solutions , 2006 .

[21]  Ville Tirronen,et al.  On memetic Differential Evolution frameworks: A study of advantages and limitations in hybridization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[22]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[23]  Janez Brest,et al.  Differential evolution for multiobjective optimization with self adaptation , 2007, 2007 IEEE Congress on Evolutionary Computation.

[24]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[25]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[26]  Ivan Zelinka,et al.  ON STAGNATION OF THE DIFFERENTIAL EVOLUTION ALGORITHM , 2000 .

[27]  Ville Tirronen,et al.  Super-fit control adaptation in memetic differential evolution frameworks , 2009, Soft Comput..

[28]  Uday K. Chakraborty,et al.  Advances in Differential Evolution , 2010 .

[29]  Hitoshi Iba,et al.  Accelerating Differential Evolution Using an Adaptive Local Search , 2008, IEEE Transactions on Evolutionary Computation.

[30]  Rainer Storn,et al.  Differential Evolution-A simple evolution strategy for fast optimization , 1997 .

[31]  Ville Tirronen,et al.  A Memetic Differential Evolution in Filter Design for Defect Detection in Paper Production , 2009, EvoWorkshops.

[32]  Qingfu Zhang,et al.  DE/EDA: A new evolutionary algorithm for global optimization , 2005, Inf. Sci..

[33]  M. El-Sharkawi,et al.  Introduction to Evolutionary Computation , 2008 .