On principles for the selection of shape functions for the Generalized Finite Element Method

Effective shape functions for the Generalized Finite Element Method should reflect the available information on the solution. This information is partially fuzzy, because the solution is, of course, unknown, and typically the only available information is the solution’s inclusion in a variety of function spaces. It is desirable to choose shape functions that perform robustly over a family of relevant situations. Quantitative notions of robustness are introduced and discussed. We show, in particular, that in one dimension polynomials are robust when the available information consists in inclusions in Sobolev-type spaces that are x-independent.

[1]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[2]  Omar Laghrouche,et al.  Solving short wave problems using special finite elements - Towards an adaptive approach , 2000 .

[3]  T. Liszka,et al.  hp-Meshless cloud method , 1996 .

[4]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[5]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[6]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[7]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[8]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[9]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[10]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[11]  Charles A. Micchelli,et al.  SPLINE SPACES ARE OPTIMAL FOR L 2 n-WIDTH , 1978 .

[12]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[13]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[14]  Ted Belytschko,et al.  Advances in multiple scale kernel particle methods , 1996 .

[15]  A. Kolmogoroff,et al.  Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .

[16]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[17]  L. Karlovitz,et al.  Remarks on variational characterizations of eigenvalues and n-width problems☆ , 1976 .

[18]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[19]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[20]  Ivo Babuska,et al.  Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions , 2000, Numerische Mathematik.

[21]  Ivo Babuška,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[22]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[23]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[24]  Weimin Han,et al.  Convergence analysis of a hierarchical enrichment of Dirichlet boundary conditions in a mesh‐free method , 2002 .

[25]  Ivo Babuska,et al.  Direct and Inverse Approximation Theorems for the p-Version of the Finite Element Method in the Framework of Weighted Besov Spaces. Part I: Approximability of Functions in the Weighted Besov Spaces , 2001, SIAM J. Numer. Anal..

[26]  I. Babuska,et al.  The generalized finite element method , 2001 .

[27]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[28]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.