Image registration and mosaicing for dynamic In vivo fibered confocal microscopy : Image Registration and Mosaicing for Dynamic In Vivo Fibered Confocal Microscopy. (Recalage et mosaïques d'images pour la microscopie confocale fibrée dynamique in vivo)

Classical confocal microscopy can be used to obtain high-resolution images of cells in tissue samples or cell cultures. Translation of this technology for in vivo applications can be achieved by using optical fibers and miniature optics. Ultimately, fibered confocal microscopy should enable clinicians and biologists to perform what can be referred to as an optical biopsy: a real-time histological examination of biological tissues in the living organism directly onto the region of interest. The main goal of this thesis is to move beyond current hardware limitations of these imaging devices by developing specific innovative image registration schemes. In particular, this manuscript is framed by the goal of providing, through video sequence mosaicing tools, wide field-of-view optical biopsies to the clinicians. This targeted application is seen as a pipeline that takes raw data as input and provides wide field-of-view image mosaics as output. We detail the critical building blocks of this pipeline, namely real-time image reconstruction, linear image registration and non-rigid registration, before presenting our mosaicing framework. The raw data that fibered confocal microscopy produces is difficult to use as it is modulated by a fiber optics bundle pattern and distorted by geometric artifacts. In this context, we show that real-time image reconstruction can be used as a preprocessing step to get readily interpretable video sequences. Since fibered confocal microscopy is a contact imaging modality, the combined movement of the imaged tissues and the flexible optical microprobe makes it sometimes difficult to get robust and accurate measurements of parameters of interest. To address this problem, we investigated efficient and robust registration of pairs of images. We show that registration tools recently developed in the field of vision-based robot control can outperform classical image registration solutions used in biomedical image analysis. The adequacy of these tools for linear image registration led us to revisit non-rigid registration. By casting the non-rigid registration problem as an optimization problem on a Lie group, we develop a fast non-parametric diffeomorphic image registration scheme. In addition to being diffeomorphic, our algorithm provides results that are similar to the ones from Thirion's demons algorithm but with transformations that are smoother and closer to the true ones. Finally, we use these image reconstruction and registration building blocks to propose a robust mosaicing algorithm that is able to recover a globally consistent alignment of the input frames, to compensate for the motion distortions and to capture the non-rigid deformations. Moreover, our mosaicing algorithm has recently been incorporated within a multicenter clinical trial. This trial illustrates the clinical value of our tools in the particular application of Barrett's esophagus surveillance.

[1]  Stephen R. Marsland,et al.  A Hamiltonian Particle Method for Diffeomorphic Image Registration , 2007, IPMI.

[2]  Rebecca R. Richards-Kortum,et al.  Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues , 2002, IEEE Transactions on Biomedical Engineering.

[3]  John B. Moore,et al.  Gauss-Newton-on-manifold for pose estimation , 2005 .

[4]  Stephen R. Marsland,et al.  Constructing diffeomorphic representations for the groupwise analysis of nonrigid registrations of medical images , 2004, IEEE Transactions on Medical Imaging.

[5]  Prateek Sharma,et al.  The Quest for Intestinal Metaplasia–Is It Worth the Effort? , 2007, The American Journal of Gastroenterology.

[6]  Selim Benhimane,et al.  Homography-based 2D Visual Tracking and Servoing , 2007, Int. J. Robotics Res..

[7]  Selim Benhimane,et al.  Real-time image-based tracking of planes using efficient second-order minimization , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[8]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[9]  Shmuel Peleg,et al.  Mosaicing on Adaptive Manifolds , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Stephan Rupp,et al.  Physically Motivated Reconstruction of Fiberscopic Images , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[11]  Nicholas Ayache,et al.  Processing of in vivo fibered confocal microscopy video sequences , 2008 .

[12]  H. Bischof,et al.  A Framework for Comparison and Evaluation of Nonlinear Intra-Subject Image Registration Algorithms , 2007, The Insight Journal.

[13]  Alan C. Evans,et al.  Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis , 2002, IEEE Transactions on Medical Imaging.

[14]  H. Miyajima,et al.  A miniature confocal optical microscope with MEMS gimbal scanner , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[15]  J. P. Lewis,et al.  Fast Template Matching , 2009 .

[16]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[17]  J. Hilgert A Connected Lie Group Equals the Square of the Exponential Image , 2003 .

[18]  J. J. Padilla,et al.  Endoscopic ultraviolet-induced autofluorescence spectroscopy of the esophagus: tissue characterization and potential for early cancer diagnosis. , 2000, Endoscopy.

[19]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[20]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[21]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[22]  G. Christensen,et al.  Large Deformation Fluid Diffeomorphisms for Landmark and Image Matching , 1999 .

[23]  I. Holopainen Riemannian Geometry , 1927, Nature.

[24]  G S Kino,et al.  Micromachined scanning confocal optical microscope. , 1996, Optics letters.

[25]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[26]  Nicholas Ayache,et al.  Insight into Efficient Image Registration Techniques and the Demons Algorithm , 2007, IPMI.

[27]  Nicholas Ayache,et al.  Iconic feature based nonrigid registration: the PASHA algorithm , 2003, Comput. Vis. Image Underst..

[28]  HermosilloGerardo,et al.  Variational Methods for Multimodal Image Matching , 2002 .

[29]  Francois Lacombe,et al.  Real time autonomous video image registration for endomicroscopy: fighting the compromises , 2008, SPIE BiOS.

[30]  A. Mehta,et al.  In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. , 2004, Journal of neurophysiology.

[31]  Alexander Meining,et al.  In vivo histopathology of lymphocytic colitis. , 2007, Gastrointestinal endoscopy.

[32]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[33]  Matthew A. Brown,et al.  Recognising panoramas , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[34]  Pierre-Louis Bazin,et al.  Digital Homeomorphisms in Deformable Registration , 2007, IPMI.

[35]  E. Vicaut,et al.  Fibered Confocal Fluorescence Microscopy (Cell-viZio™) Facilitates Extended Imaging in the Field of Microcirculation , 2004, Journal of Vascular Research.

[36]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[37]  Stephan Rupp,et al.  Automatic Adaptive Enhancement for Images Obtained With Fiberscopic Endoscopes , 2006, IEEE Transactions on Biomedical Engineering.

[38]  Imran A. Pirwani,et al.  Introduction to the Non-rigid Image Registration Evaluation Project (NIREP) , 2006, WBIR.

[39]  Anne E Carpenter,et al.  Methods for High-Content , High-Throughput Image-Based Cell Screening , 2006 .

[40]  Fabrice Heitz,et al.  3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization , 2005, IEEE Transactions on Image Processing.

[41]  Michael Unser,et al.  Variational image reconstruction from arbitrarily spaced samples: a fast multiresolution spline solution , 2005, IEEE Transactions on Image Processing.

[42]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[43]  Ch. Bernard,et al.  Wavelets and ill-posed problems : optic flow estimation and scattered data interpolation , 1999 .

[44]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[45]  Joe Y. Chang,et al.  Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy , 2005, Physics in medicine and biology.

[46]  Colin Studholme,et al.  Nonrigid image registration: guest editors' introduction , 2003, Comput. Vis. Image Underst..

[47]  Nicholas Ayache,et al.  Measuring blood cells velocity in microvessels from a single image: application to in vivo and in situ confocal microscopy , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[48]  J. Zerubia,et al.  Parametric Blind Deconvolution for Confocal Laser Scanning Microscopy , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[49]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[50]  Josiane Zerubia,et al.  Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution , 2006, Microscopy research and technique.

[51]  Dinggang Shen,et al.  Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms , 2006, NeuroImage.

[52]  Haruhiro Inoue,et al.  Technology Insight: laser-scanning confocal microscopy and endocytoscopy for cellular observation of the gastrointestinal tract , 2005, Nature Clinical Practice Gastroenterology &Hepatology.

[53]  D. Louis Collins,et al.  Twenty New Digital Brain Phantoms for Creation of Validation Image Data Bases , 2006, IEEE Transactions on Medical Imaging.

[54]  Robert T. Schultz,et al.  A unified non-rigid feature registration method for brain mapping , 2003, Medical Image Anal..

[55]  W. Eric L. Grimson,et al.  Detection and analysis of statistical differences in anatomical shape , 2005, Medical Image Anal..

[56]  R. Kiesslich,et al.  Confocal laser endomicroscopy: technical status and current indications , 2006, Endoscopy.

[57]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[58]  R Richards-Kortum,et al.  Optical Systems for in Vivo Molecular Imaging of Cancer , 2003, Technology in cancer research & treatment.

[59]  Sébastien Ourselin,et al.  Block Matching: A General Framework to Improve Robustness of Rigid Registration of Medical Images , 2000, MICCAI.

[60]  Nicholas Ayache,et al.  In Vivo Microscopy for Real-Time Structural and Functional Cellular Imaging , 2007, ERCIM News.

[61]  Nathan D. Cahill,et al.  Fourier Methods for Nonparametric Image Registration , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[62]  Nicholas Ayache,et al.  Non-parametric Diffeomorphic Image Registration with the Demons Algorithm , 2007, MICCAI.

[63]  Robert E. Mahony,et al.  The Geometry of the Newton Method on Non-Compact Lie Groups , 2002, J. Glob. Optim..

[64]  Tinsu Pan,et al.  Region of Interest Motion Compensation in PET Image Reconstruction , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[65]  R. Kiesslich,et al.  In vivo histology of Barrett's esophagus and associated neoplasia by confocal laser endomicroscopy. , 2005, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[66]  R Richards-Kortum,et al.  Fiber-optic confocal microscopy using a spatial light modulator. , 2000, Optics letters.

[67]  James Davis,et al.  Mosaics of scenes with moving objects , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[68]  Isaac Amidror,et al.  Scattered data interpolation methods for electronic imaging systems: a survey , 2002, J. Electronic Imaging.

[69]  Polina Golland,et al.  Permutation Tests for Classification: Towards Statistical Significance in Image-Based Studies , 2003, IPMI.

[70]  N. Ayache,et al.  Bi-invariant Means in Lie Groups. Application to Left-invariant Polyaffine Transformations , 2006 .

[71]  Xavier Pennec,et al.  Statistical Computing on Manifolds for Computational Anatomy , 2006 .

[72]  Nicholas Ayache,et al.  Towards Optical Biopsies with an Integrated Fibered Confocal Fluorescence Microscope , 2004, MICCAI.

[73]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.

[74]  J. Changeux,et al.  Live imaging of neural structure and function by fibred fluorescence microscopy , 2006, EMBO reports.

[75]  Carlos Vázquez,et al.  Reconstruction of nonuniformly sampled images in spline spaces , 2005, IEEE Transactions on Image Processing.

[76]  Nicholas Ayache,et al.  Mosaicing of Confocal Microscopic In Vivo Soft Tissue Video Sequences , 2005, MICCAI.

[77]  Nassir Navab,et al.  Towards a computer-aided diagnosis system for colon motility dysfunctions , 2007, SPIE Medical Imaging.

[78]  Stanislav Kovacic,et al.  Symmetric image registration , 2006, Medical Image Anal..

[79]  Xavier Pennec,et al.  Diffeomorphic Demons Using ITK's Finite Difference Solver Hierarchy , 2008, The Insight Journal.

[80]  B. Viellerobe,et al.  Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis. , 2007, Optics express.

[81]  Carl-Fredrik Westin,et al.  Affine and Deformable Registration Based on Polynomial Expansion , 2006, MICCAI.

[82]  L. Younes,et al.  Statistics on diffeomorphisms via tangent space representations , 2004, NeuroImage.

[83]  Nicholas Ayache,et al.  REGION TRACKING ALGORITHMS ON LASER SCANNING DEVICES APPLIED TO CELL TRAFFIC ANALYSIS , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[84]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[85]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[86]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[87]  Guojie Li,et al.  From the Editor-in-Chief , 1995, Journal of Computer Science and Technology.

[88]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[89]  Wen-Liang Hwang,et al.  Analysis on multiresolution mosaic images , 2004, IEEE Trans. Image Process..

[90]  Nassir Navab,et al.  Three-Dimensional Ultrasound Mosaicing , 2007, MICCAI.

[91]  Suresh K. Lodha,et al.  Scattered Data Techniques for Surfaces , 1997, Scientific Visualization Conference (dagstuhl '97).

[92]  P. Anandan,et al.  Mosaic based representations of video sequences and their applications , 1995, Proceedings of IEEE International Conference on Computer Vision.

[93]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[94]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[95]  Nicolas Toussaint,et al.  MedINRIA: Medical Image Navigation and Research Tool by INRIA , 2007 .

[96]  Olivier D. Faugeras,et al.  Dense image matching with global and local statistical criteria: a variational approach , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[97]  P. Thomas Fletcher,et al.  Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors , 2004, ECCV Workshops CVAMIA and MMBIA.

[98]  Nicholas Ayache,et al.  Understanding the "Demon's Algorithm": 3D Non-rigid Registration by Gradient Descent , 1999, MICCAI.

[99]  B E Bouma,et al.  Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging. , 2006, Optics express.

[100]  P. M. Hummel,et al.  A Generalization of Taylor's Expansion , 1949 .

[101]  O. Faugeras,et al.  Non Rigid Registration of Diffusion Tensor Images , 2007 .

[102]  Y. Sabharwal,et al.  Slit-scanning confocal microendoscope for high-resolution in vivo imaging. , 1999, Applied optics.

[103]  Pierre Hellier,et al.  Hierarchical estimation of a dense deformation field for 3-D robust registration , 2001, IEEE Transactions on Medical Imaging.

[104]  Nicholas J. Higham,et al.  The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..

[105]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[106]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[107]  S. Mallat A wavelet tour of signal processing , 1998 .

[108]  Nicholas Ayache,et al.  Uniform Distribution, Distance and Expectation Problems for Geometric Features Processing , 1998, Journal of Mathematical Imaging and Vision.

[109]  Daniel Rueckert,et al.  Diffeomorphic Registration Using B-Splines , 2006, MICCAI.

[110]  Thomas D. Wang,et al.  Dual-axis confocal microscope for high-resolution in vivo imaging. , 2003, Optics letters.

[111]  Shmuel Peleg,et al.  Seamless Image Stitching in the Gradient Domain , 2004, ECCV.

[112]  Ullas Gargi,et al.  Performance characterization of video-shot-change detection methods , 2000, IEEE Trans. Circuits Syst. Video Technol..

[113]  Toralf Scharf,et al.  Confocal microscopy using variable-focal-length microlenses and an optical fiber bundle. , 2005, Applied optics.

[114]  Nicholas Ayache,et al.  c ○ 2004 Kluwer Academic Publishers. Manufactured in The Netherlands. Isotropic Energies, Filters and Splines for Vector Field Regularization , 2022 .

[115]  Ramin Shahidi,et al.  Validation of medical image processing in image-guided therapy , 2002, IEEE Transactions on Medical Imaging.

[116]  William M. Wells,et al.  A Marginalized MAP Approach and EM Optimization for Pair-Wise Registration , 2007, IPMI.

[117]  Nassir Navab,et al.  New CTA Protocol and 2D-3D Registration Method for Liver Catheterization , 2006, MICCAI.

[118]  Tom Kamiel Magda Vercauteren,et al.  In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. , 2007, American journal of respiratory and critical care medicine.

[119]  Olivier D. Faugeras,et al.  Flows of diffeomorphisms for multimodal image registration , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[120]  Patrick Bouthemy,et al.  A unified approach to shot change detection and camera motion characterization , 1999, IEEE Trans. Circuits Syst. Video Technol..

[121]  Nicholas Ayache,et al.  Model-Based Detection of Tubular Structures in 3D Images , 2000, Comput. Vis. Image Underst..

[122]  Kenneth K Wang,et al.  Updated Guidelines 2008 for the Diagnosis, Surveillance and Therapy of Barrett's Esophagus , 1998, The American Journal of Gastroenterology.

[123]  John S. Boreczky,et al.  A hidden Markov model framework for video segmentation using audio and image features , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[124]  R.A. Zoroofi,et al.  Automatic extraction and measurement of leukocyte motion in microvessels using spatiotemporal image analysis , 1997, IEEE Transactions on Biomedical Engineering.

[125]  Dimitris N. Metaxas,et al.  Open science - combining open data and open source software: Medical image analysis with the Insight Toolkit , 2005, Medical Image Anal..

[126]  Charles V. Stewart,et al.  A Feature-Based Technique for Joint Linear Estimation of High-Order Image-to-Mosaic Transformations: Mosaicing the Curved Human Retina , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[127]  Richard K. Beatson,et al.  Fast Evaluation of Radial Basis Functions: Methods for Generalized Multiquadrics in Rn , 2001, SIAM J. Sci. Comput..

[128]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2000, SCG '00.

[129]  Tom Vercauteren,et al.  Processing and mosaicing of fibered confocal images , 2006 .

[130]  G. Fasshauer Meshfree Methods , 2004 .

[131]  Tom Kamiel Magda Vercauteren,et al.  MOSAICING OF CONFOCAL MICROSCOPIC VIDEO SEQUENCES: LARGER FIELD OF VIEW AND STILL HIGHER RESOLUTION , 2007 .

[132]  Ben Himane,et al.  Vers une approche unifiée pour le suivi temps réel et l'asservissement visuel , 2006 .

[133]  Olivier D. Faugeras,et al.  Variational Methods for Multimodal Image Matching , 2002, International Journal of Computer Vision.

[134]  John Kenneth Salisbury,et al.  Real-Time Image Mosaicing for Medical Applications , 2007, MMVR.

[135]  S. Kudo,et al.  Pit pattern in colorectal neoplasia: endoscopic magnifying view. , 2004, Endoscopy.

[136]  Shmuel Peleg,et al.  Efficient super-resolution and applications to mosaics , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[137]  Nicholas Ayache,et al.  Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy , 2006, Medical Image Anal..

[138]  Richard Szeliski,et al.  Eliminating ghosting and exposure artifacts in image mosaics , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[139]  Fritjof Helmchen,et al.  Miniaturization of Fluorescence Microscopes Using Fibre Optics , 2002, Experimental physiology.

[140]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[141]  Edward H. Adelson,et al.  A multiresolution spline with application to image mosaics , 1983, TOGS.

[142]  Harpreet S. Sawhney,et al.  Robust Video Mosaicing through Topology Inference and Local to Global Alignment , 1998, ECCV.

[143]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[144]  Luis Ibáñez,et al.  The ITK Software Guide , 2005 .

[145]  M. Wüstner A Connected Lie Group Equals the Square of the Exponential Image , 2002 .

[146]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[147]  Balraj Naren,et al.  Medical Image Registration , 2022 .

[148]  R. Deriche Recursively Implementing the Gaussian and its Derivatives , 1993 .

[149]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[150]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[151]  P. Choyke,et al.  Imaging of angiogenesis: from microscope to clinic , 2003, Nature Medicine.

[152]  Thomas Strohmer,et al.  Computationally attractive reconstruction of bandlimited images from irregular samples , 1997, IEEE Trans. Image Process..

[153]  A. Bhattacharyya,et al.  Magnification chromoendoscopy for the detection of intestinal metaplasia and dysplasia in Barrett’s oesophagus , 2003, Gut.