暂无分享,去创建一个
[1] Neil D. Lawrence,et al. Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.
[2] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[3] Yee Whye Teh,et al. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.
[4] Neil D. Lawrence,et al. Nested Variational Compression in Deep Gaussian Processes , 2014, 1412.1370.
[5] Theodoros Damoulas,et al. Multi-resolution Multi-task Gaussian Processes , 2019, NeurIPS.
[6] Carl E. Rasmussen,et al. Rates of Convergence for Sparse Variational Gaussian Process Regression , 2019, ICML.
[7] Jos'e Miguel Hern'andez-Lobato,et al. Deep Gaussian Processes with Decoupled Inducing Inputs , 2018 .
[8] Sébastien Ourselin,et al. Efficient Gaussian Process-Based Modelling and Prediction of Image Time Series , 2015, IPMI.
[9] Marc Peter Deisenroth,et al. Doubly Stochastic Variational Inference for Deep Gaussian Processes , 2017, NIPS.
[10] M. Opper. Sparse Online Gaussian Processes , 2008 .
[11] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[12] Neil D. Lawrence,et al. Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.
[13] James Hensman,et al. On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes , 2015, AISTATS.
[14] Richard E. Turner,et al. Streaming Sparse Gaussian Process Approximations , 2017, NIPS.
[15] James Hensman,et al. MCMC for Variationally Sparse Gaussian Processes , 2015, NIPS.
[16] Byron Boots,et al. Orthogonally Decoupled Variational Gaussian Processes , 2018, NeurIPS.
[17] Christopher K. I. Williams,et al. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .
[18] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[19] James Hensman,et al. Scalable Variational Gaussian Process Classification , 2014, AISTATS.
[20] Arno Solin,et al. Variational Fourier Features for Gaussian Processes , 2016, J. Mach. Learn. Res..
[21] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[22] Neil D. Lawrence,et al. Deep Gaussian Processes , 2012, AISTATS.
[23] Ben Taskar,et al. Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..
[24] Ronald J. Williams,et al. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.
[25] Carl E. Rasmussen,et al. Sparse Spectrum Gaussian Process Regression , 2010, J. Mach. Learn. Res..
[26] Carl E. Rasmussen,et al. PILCO: A Model-Based and Data-Efficient Approach to Policy Search , 2011, ICML.
[27] Lehel Csató,et al. Sparse On-Line Gaussian Processes , 2002, Neural Computation.
[28] Jonas Mockus,et al. On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.
[29] Samuel Kaski,et al. Deep convolutional Gaussian processes , 2018, ECML/PKDD.
[30] Alexis Boukouvalas,et al. GrandPrix: scaling up the Bayesian GPLVM for single-cell data , 2017, bioRxiv.
[31] Ryan P. Adams,et al. Avoiding pathologies in very deep networks , 2014, AISTATS.
[32] Neil D. Lawrence,et al. Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.
[33] Nando de Freitas,et al. Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.
[34] Andrew Gordon Wilson,et al. GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration , 2018, NeurIPS.
[35] Roy L. Streit,et al. Poisson Point Processes: Imaging, Tracking, and Sensing , 2010 .
[36] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[37] Ariel D. Procaccia,et al. Variational Dropout and the Local Reparameterization Trick , 2015, NIPS.
[38] Jasper Snoek,et al. Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.
[39] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[40] Maurizio Filippone,et al. Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations , 2020, AISTATS.
[41] Aníbal R. Figueiras-Vidal,et al. Inter-domain Gaussian Processes for Sparse Inference using Inducing Features , 2009, NIPS.