Singular Lagrangian systems and variational constrained mechanics on Lie algebroids
暂无分享,去创建一个
D. Martín de Diego | D. Iglesias | D. Iglesias | J.C. Marrero | D. Sosa | D. Martín de Diego | J. Marrero | D. Sosa
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] W. Crocker. Reduction , 1911, Botanical Gazette.
[3] Paul Adrien Maurice Dirac. Generalized Hamiltonian dynamics , 1950 .
[4] Mark J. Gotay,et al. Presymplectic manifolds and the Dirac-Bergmann theory of constraints , 1978 .
[5] J. M. Nester,et al. Presymplectic lagrangian systems. II : the second-order equation problem , 1980 .
[6] A. Capri,et al. A mechanical model with constraints , 1982 .
[7] Ray Skinner,et al. Generalized Hamiltonian dynamics. II. Gauge transformations , 1983 .
[8] Ray Skinner,et al. Generalized Hamiltonian dynamics. I. Formulation on T*Q⊕TQ , 1983 .
[9] A. Capri,et al. The first-rank tensor field coupled to an electromagnetic field , 1987 .
[10] On the existence of local and global Lagrangians for ordinary differential equations , 1990 .
[11] R. Bains,et al. Methods of differential geometry in analytical mechanics , 1992 .
[12] P. Krishnaprasad. Optimal Control and Poisson Reduction , 1993 .
[13] Instituto de Matemáticas y Física Fundamental , 1994 .
[14] K. Mackenzie,et al. Lie bialgebroids and Poisson groupoids , 1994 .
[15] P. Krishnaprasad,et al. Nonholonomic mechanical systems with symmetry , 1996 .
[16] Wang Sang Koon,et al. Reduction, Reconstruction and Optimal Control for Nonholonomic Mechanical Systems with Symmetry , 1997 .
[17] J. Marsden,et al. Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction , 1997 .
[18] V. Jurdjevic,et al. Geometric control and non-holonomic mechanics : Conference on Geometric Control and Non-Holonomic Mechanics, June 19-21, 1996, Mexico City , 1998 .
[19] REDUCTION OF PRESYMPLECTIC MANIFOLDS WITH SYMMETRY , 1999, math-ph/9911008.
[20] David L. Elliott,et al. Geometric control theory , 2000, IEEE Trans. Autom. Control..
[21] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[22] Eduardo Martínez. Lagrangian Mechanics on Lie Algebroids , 2001 .
[23] Marius Crainic,et al. Integrability of Lie brackets , 2001 .
[24] Sonia Martínez,et al. Geometric Description of Vakonomic and Nonholonomic Dynamics. Comparison of Solutions , 2002, SIAM J. Control. Optim..
[25] K. Lynch. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[26] Lagrangian submanifolds and dynamics on Lie algebroids , 2004, math/0407528.
[27] Sonia Martinez,et al. General symmetries in optimal control , 2004 .
[28] Eduardo Martínez,et al. Reduction in optimal control theory , 2004 .
[29] Roberto Benito,et al. Discrete vakonomic mechanics , 2005 .
[30] K.Grabowska,et al. Geometrical Mechanics on algebroids , 2005, math-ph/0509063.
[31] J. Cortes,et al. Nonholonomic Lagrangian systems on Lie algebroids , 2005, math-ph/0512003.
[32] K. Mackenzie,et al. General theory of lie groupoids and lie algebroids , 2005 .
[33] T. Morrison,et al. Dynamical Systems , 2021, Nature.
[34] Eduardo Martinez. Variational calculus on Lie algebroids , 2006 .
[35] R. Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .
[36] Anthony M. Bloch,et al. Optimal control of underactuated nonholonomic mechanical systems , 2006, 2006 American Control Conference.
[37] Eduardo Martínez,et al. Discrete Nonholonomic Lagrangian Systems on Lie Groupoids , 2007, J. Nonlinear Sci..
[38] B. Hajduk,et al. Presymplectic manifolds , 2009, 0912.2297.