Singular Lagrangian systems and variational constrained mechanics on Lie algebroids

The purpose of this article is to describe Lagrangian mechanics for constrained systems on Lie algebroids, a natural framework which covers a wide range of situations (systems on Lie groups, quotients by the action of a Lie group, standard tangent bundles …). In particular, we are interested in two cases: singular Lagrangian systems and vakonomic mechanics (variational constrained mechanics). Several examples illustrate the interest of these developments.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  W. Crocker Reduction , 1911, Botanical Gazette.

[3]  Paul Adrien Maurice Dirac Generalized Hamiltonian dynamics , 1950 .

[4]  Mark J. Gotay,et al.  Presymplectic manifolds and the Dirac-Bergmann theory of constraints , 1978 .

[5]  J. M. Nester,et al.  Presymplectic lagrangian systems. II : the second-order equation problem , 1980 .

[6]  A. Capri,et al.  A mechanical model with constraints , 1982 .

[7]  Ray Skinner,et al.  Generalized Hamiltonian dynamics. II. Gauge transformations , 1983 .

[8]  Ray Skinner,et al.  Generalized Hamiltonian dynamics. I. Formulation on T*Q⊕TQ , 1983 .

[9]  A. Capri,et al.  The first-rank tensor field coupled to an electromagnetic field , 1987 .

[10]  On the existence of local and global Lagrangians for ordinary differential equations , 1990 .

[11]  R. Bains,et al.  Methods of differential geometry in analytical mechanics , 1992 .

[12]  P. Krishnaprasad Optimal Control and Poisson Reduction , 1993 .

[13]  Instituto de Matemáticas y Física Fundamental , 1994 .

[14]  K. Mackenzie,et al.  Lie bialgebroids and Poisson groupoids , 1994 .

[15]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[16]  Wang Sang Koon,et al.  Reduction, Reconstruction and Optimal Control for Nonholonomic Mechanical Systems with Symmetry , 1997 .

[17]  J. Marsden,et al.  Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction , 1997 .

[18]  V. Jurdjevic,et al.  Geometric control and non-holonomic mechanics : Conference on Geometric Control and Non-Holonomic Mechanics, June 19-21, 1996, Mexico City , 1998 .

[19]  REDUCTION OF PRESYMPLECTIC MANIFOLDS WITH SYMMETRY , 1999, math-ph/9911008.

[20]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[21]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[22]  Eduardo Martínez Lagrangian Mechanics on Lie Algebroids , 2001 .

[23]  Marius Crainic,et al.  Integrability of Lie brackets , 2001 .

[24]  Sonia Martínez,et al.  Geometric Description of Vakonomic and Nonholonomic Dynamics. Comparison of Solutions , 2002, SIAM J. Control. Optim..

[25]  K. Lynch Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[26]  Lagrangian submanifolds and dynamics on Lie algebroids , 2004, math/0407528.

[27]  Sonia Martinez,et al.  General symmetries in optimal control , 2004 .

[28]  Eduardo Martínez,et al.  Reduction in optimal control theory , 2004 .

[29]  Roberto Benito,et al.  Discrete vakonomic mechanics , 2005 .

[30]  K.Grabowska,et al.  Geometrical Mechanics on algebroids , 2005, math-ph/0509063.

[31]  J. Cortes,et al.  Nonholonomic Lagrangian systems on Lie algebroids , 2005, math-ph/0512003.

[32]  K. Mackenzie,et al.  General theory of lie groupoids and lie algebroids , 2005 .

[33]  T. Morrison,et al.  Dynamical Systems , 2021, Nature.

[34]  Eduardo Martinez Variational calculus on Lie algebroids , 2006 .

[35]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[36]  Anthony M. Bloch,et al.  Optimal control of underactuated nonholonomic mechanical systems , 2006, 2006 American Control Conference.

[37]  Eduardo Martínez,et al.  Discrete Nonholonomic Lagrangian Systems on Lie Groupoids , 2007, J. Nonlinear Sci..

[38]  B. Hajduk,et al.  Presymplectic manifolds , 2009, 0912.2297.