Relativistic effects and the halogen dependencies in the 13C chemical shifts of CH4−nIn, CH4−nBrn, CCl4−nIn, and CBr4−nIn (n=0–4)

Linear and nonlinear halogen dependencies of the 13C magnetic shielding constants of CH4−nIn, CH4−nBrn, CCl4−nIn, and CBr4−nIn were fairly reproduced by the ab initio generalized unrestricted Hartree–Fock (GUHF)/finite perturbation (FP) method including spin‐orbit (SO) interaction and spin‐free relativistic (SFR) terms. As seen from the experimental trends, the calculated 13C chemical shifts in CCl4−nIn and CBr4−nIn depend linearly on n=0–4, while those in CH4−nIn and CH4−nBrn depend nonlinearly. We found that both the linear and nonlinear dependencies are due to the relativistic effects, and especially due to the Fermi–Contact (FC) term originating from the SO interaction. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 528–536, 2001

[1]  M. Kaupp,et al.  Interpretation of 13C NMR chemical shifts in halomethyl cations. On the importance of spin-orbit coupling and electron correlation , 1997 .

[2]  Hiroshi Nakatsuji,et al.  Basis set dependence of magnetic shielding constant calculated by the Hartree-Fock/finite perturbation method , 1996 .

[3]  Georg Schreckenbach,et al.  Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes , 1997 .

[4]  J. G. Hoffman,et al.  Determination of organic structures by physical methods , 1955 .

[5]  Dennis R. Salahub,et al.  Spin-orbit correction to NMR shielding constants from density functional theory , 1996 .

[6]  J. Tossell,et al.  Nuclear magnetic shieldings and molecular structure , 1993 .

[7]  A. Grimmer Ligandenaustausch im System PCI - PBr - ein Beitrag zu Fragen der 31P-Kernresonanz im Festkörper† , 1973 .

[8]  W. C. Ermler,et al.  Abinitio relativistic effective potentials with spinorbit operators. III. Rb through Xe , 1987 .

[9]  Hiroshi Nakatsuji,et al.  Spin-orbit effect on the magnetic shielding constant using the ab initio UHF method. Electronic mechanism in the aluminum compounds, A1X4− (X = H, F, Cl, Br and I) , 1996 .

[10]  Walter C. Ermler,et al.  Abinitio relativistic effective potentials with spin‐orbit operators. II. K through Kr , 1986 .

[11]  Hiroshi Nakatsuji,et al.  SPIN-ORBIT EFFECT ON THE MAGNETIC SHIELDING CONSTANT USING THE AB INITIO UHF METHOD , 1995 .

[12]  H. Nakatsuji,et al.  Theoretical study of the metal chemical shift in nuclear magnetic resonance. Silver, cadmium, copper, and zinc complexes , 1984 .

[13]  Hiroshi Nakatsuji,et al.  Relativistic study of nuclear magnetic shielding constants: tungsten hexahalides and tetraoxide , 1996 .

[14]  Hiroshi Nakatsuji,et al.  Relativistic study of nuclear magnetic shielding constants: hydrogen halides , 1996 .

[15]  W. Flygare,et al.  Calculation of Diamagnetic Shielding in Molecules , 1968 .

[16]  G. Schreckenbach,et al.  The calculation of NMR shielding tensors based on density functional theory and the frozen‐core approximation , 1996 .

[17]  J. Schraml,et al.  4 – 29Si Nuclear Magnetic Resonance , 1976 .

[18]  Hiroshi Nakatsuji,et al.  Relativistic study of nuclear magnetic shielding constants: mercury dihalides , 1996 .

[19]  B. A. Hess,et al.  Spin–orbit corrections to NMR shielding constants from density functional theory. How important are the two-electron terms? , 1998 .

[20]  F. Bordwell Determination of organic structures by physical methods (Nachod, F. C.; Phillips, W. D.; eds.) , 1962 .

[21]  P. Royen,et al.  OODR spectroscopy of BaCl. Rotational analysis of the G 2Σ+ state , 1994 .

[22]  Tom Ziegler,et al.  Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling , 1998 .

[23]  L. G. Sillén,et al.  The Accuracy of Inter-atomic Distances Obtained in Electron Diffraction Investigations of Molecular Structures. , 1949 .

[24]  Hiroshi Nakatsuji,et al.  Gauge‐invariant basis sets for magnetic property calculations , 1995 .

[25]  Hiroshi Nakatsuji,et al.  Spin—orbit effect on the magnetic shielding constant using the ab initio UHF method: silicon tetrahalides , 1995 .

[26]  George C. Levy,et al.  Carbon-13 nuclear magnetic resonance for organic chemists , 1972 .

[27]  Hiroshi Nakatsuji,et al.  Electronic Mechanisms of Metal Chemical Shifts from Ab Initio Theory , 1993 .

[28]  Hiroshi Nakatsuji,et al.  Spin-orbit effect on the magnetic shielding constant using the ab initio UHF method: gallium and indium tetrahalides , 1995 .

[29]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .