GENERATORS OF CONES AND CYLINDERS

Publisher Summary This chapter presents some results and questions about algebraic languages. The study of this particular family can be justified by two main reasons. The first one is that these languages have a lot of applications because they involve the fundamental mechanism of recursion as a finite description for infinite objects. The second major reason is that this family has a lot of mathematical properties. The work on algebraic languages has three main goals: to know as much as possible on the structure of algebraic languages; to know about the structure of the family of algebraic languages; and to relate the structure of a language and the structure of the rational cone it generates. From a language theoretician's point of view, studying these notions is only a step toward the applications of the study of the structure of families of languages. The operations on languages have been considered since the beginning of the theory of languages. The most obvious operations are union, morphism, and inverse morphism.

[1]  Maurice Nivat,et al.  Quelques problèmes ouverts en théorie des langages algébriques , 1979, RAIRO Theor. Informatics Appl..

[2]  Jean-Michel Autebert Pushdown-Automata and Families of Languages Generating Cylinders , 1977, MFCS.

[3]  W. J. Chandler Abstract families of deterministic languages , 1969, STOC.

[4]  Luc Boasson,et al.  Langages Algebriques, Paires Iterantes et Transductions Rationnelles , 1976, Theor. Comput. Sci..

[5]  Sheila A. Greibach,et al.  One Counter Languages and the IRS Condition , 1975, J. Comput. Syst. Sci..

[6]  Christian Choffrut,et al.  Une Caracterisation des Fonctions Sequentielles et des Fonctions Sous-Sequentielles en tant que Relations Rationnelles , 1977, Theor. Comput. Sci..

[7]  Günter Hotz,et al.  Normal-form transformations of context-free grammars , 1978, Acta Cybern..

[8]  Christiane Frougny Langages très simples générateurs , 1979, RAIRO Theor. Informatics Appl..

[9]  Marcel Paul Schützenberger,et al.  A Remark on Finite Transducers , 1961, Inf. Control..

[10]  Maurice Nivat,et al.  Transduction des langages de Chomsky , 1968 .

[11]  Seymour Ginsburg,et al.  Abstract Families of Languages , 1967, SWAT.

[12]  S. Ginsburg,et al.  A Characterization of Machine Mappings , 1966, Canadian Journal of Mathematics.

[13]  Jorge E. Mezei,et al.  On Relations Defined by Generalized Finite Automata , 1965, IBM J. Res. Dev..

[14]  Joffroy Beauquier,et al.  Generateurs Algebriques et Systemes de Paires Iterantes , 1979, Theor. Comput. Sci..

[15]  Luc Boasson The Inclusion of the Substitution Closure of Linear and One-Counter Languages in the Largest Sub-AFL of the Family of Algebraic Languages is Proper , 1973, Inf. Process. Lett..

[16]  Seymour Ginsburg,et al.  Some Uniformly Erasable Families of Languages , 1976, Theor. Comput. Sci..

[17]  Maurice Nivat,et al.  Parenthesis generators , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[18]  Sheila A. Greibach,et al.  The Hardest Context-Free Language , 1973, SIAM J. Comput..

[19]  Joffroy Beauquier Un générateur inhéremment ambigu du cône des languages algébiques , 1978, RAIRO Theor. Informatics Appl..

[20]  Luc Boasson,et al.  Two Iteration Theorems for Some Families of Languages , 1973, J. Comput. Syst. Sci..