Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media

The paper starts with a comparative discussion of features and limitations of the three types of recent approaches to reconstruction in thermoacoustic/photoacoustic tomography: backprojection formulae, eigenfunction expansions and time reversal. The latter method happens to be the least restrictive. It is then considered in more detail, e.g. its relation to trapping properties of the medium. The time reversal method is exact only in the case of a constant sound speed in odd dimension, due to validity of the Huygens' principle. The next best case is of non-trapping speed in odd dimensions. The authors provide 2D examples and discuss the features of numerical reconstructions for constant and variable (both non-trapping and trapping) speeds, showing that this technique works surprisingly well even under the most unfavorable circumstances (variable, and even trapping sound speed in 2D). In particular, a 'limited view' effect due to trapping is observed and explained. Finally, an initial consideration of the problem of sound speed recovery is also provided.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[3]  Cathleen S. Morawetz,et al.  The decay of solutions of the exterior initial-boundary value problem for the wave equation , 1961 .

[4]  Richard Courant,et al.  Methods of Mathematical Physics, Volume II: Partial Differential Equations , 1963 .

[5]  J. Ralston Solutions of the wave equation with localized energy , 1969 .

[6]  V. Edwards Scattering Theory , 1973, Nature.

[7]  B. Vainberg,et al.  ON THE SHORT WAVE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF STATIONARY PROBLEMS AND THE ASYMPTOTIC BEHAVIOUR AS t???? OF SOLUTIONS OF NON-STATIONARY PROBLEMS , 1975 .

[8]  Cathleen S. Morawetz,et al.  Decay for solutions of the exterior problem for the wave equation , 1975 .

[9]  Stephen J. Norton,et al.  Reconstruction of a two‐dimensional reflecting medium over a circular domain: Exact solution , 1980 .

[10]  Stephen J. Norton,et al.  Ultrasonic Reflectivity Imaging in Three Dimensions: Exact Inverse Scattering Solutions for Plane, Cylindrical, and Spherical Apertures , 1981, IEEE Transactions on Biomedical Engineering.

[11]  Michael E. Taylor,et al.  The Analysis of Linear Partial Differential Operators, Vols I & II. , 1985 .

[12]  A. Tam Applications of photoacoustic sensing techniques , 1986 .

[13]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[14]  Alexander Hertle,et al.  The identification problem for the constantly attenuated Radon transform , 1988 .

[15]  P. Günther Huygens' Principle and Hyperbolic Equations , 1988 .

[16]  B. Vainberg,et al.  Asymptotic methods in equations of mathematical physics , 1989 .

[17]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[18]  Sun,et al.  Photoacoustic monopole radiation in one, two, and three dimensions. , 1991, Physical review letters.

[19]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[20]  P. Kuchment,et al.  On local tomography , 1995 .

[21]  R. Kruger,et al.  Photoacoustic ultrasound (PAUS)--reconstruction tomography. , 1995, Medical physics.

[22]  Donald C. Solmon,et al.  The identification problem for the exponential Radon transform , 1995 .

[23]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[24]  William Rundell,et al.  Surveys on solution methods for inverse problems , 2000 .

[25]  E. T. Quinto,et al.  Local Tomographic Methods in Sonar , 2000 .

[26]  Lihong V. Wang,et al.  Limited view thermoacoustic tomography , 2002, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology.

[27]  M. Cheney,et al.  Synthetic aperture inversion , 2002 .

[28]  Lihong V. Wang,et al.  Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain , 2003, Nature Biotechnology.

[29]  Robert A Kruger,et al.  Thermoacoustic computed tomography using a conventional linear transducer array. , 2003, Medical physics.

[30]  L. Ehrenpreis The Universality of the Radon Transform , 2003 .

[31]  Yuan Xu,et al.  Effects of acoustic heterogeneity in breast thermoacoustic tomography , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[32]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[33]  Lihong V. Wang,et al.  Reconstructions in limited-view thermoacoustic tomography. , 2004, Medical physics.

[34]  V. Palamodov Reconstructive Integral Geometry , 2004 .

[35]  P. Kuchment Generalized Transforms of Radon Type and Their Applications , 2005 .

[36]  Otmar Scherzer,et al.  Thermoacoustic tomography using optical line detection , 2005, European Conference on Biomedical Optics.

[37]  Lihong V Wang,et al.  Universal back-projection algorithm for photoacoustic computed tomography , 2005, SPIE BiOS.

[38]  P. Burgholzer,et al.  Thermoacoustic tomography using integrating line detectors , 2005, IEEE Ultrasonics Symposium, 2005..

[39]  Gaik Ambartsoumian,et al.  Thermoacoustic tomography - implementation of exact backprojection formulas , 2005 .

[40]  P. Burgholzer,et al.  Thermoacoustic tomography with integrating area and line detectors , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[41]  Eric Todd Quinto,et al.  The radon transform, inverse problems, and tomography : American Mathematical Society short course, January 3-4, 2005, Atlanta, Georgia , 2006 .

[42]  Peter Kuchment,et al.  Some problems of integral geometry arising in tomography , 2006 .

[43]  Mark A. Anastasio,et al.  Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography , 2006, SPIE BiOS.

[44]  Lihong V. Wang,et al.  Photoacoustic imaging in biomedicine , 2006 .

[45]  Eric Todd Quinto,et al.  The Radon Transform, Inverse Problems, and Tomography , 2006 .

[46]  Rakesh,et al.  The range of the spherical mean value operator for functions supported in a ball , 2006 .

[47]  Peter Kuchment,et al.  A Range Description for the Planar Circular Radon Transform , 2006, SIAM J. Math. Anal..

[48]  E. T. Quinto,et al.  Range descriptions for the spherical mean Radon transform. I. Functions supported in a ball , 2006, math/0606314.

[49]  L. Kunyansky,et al.  Explicit inversion formulae for the spherical mean Radon transform , 2006, math/0609341.

[50]  Lihong V. Wang,et al.  Thermoacoustic tomography with correction for acoustic speed variations , 2006, Physics in medicine and biology.

[51]  Otmar Scherzer,et al.  Thermoacoustic tomography using a fiber-based Fabry-Perot interferometer as an integrating line detector , 2006, SPIE BiOS.

[52]  Peter Kuchment,et al.  Mathematics of thermoacoustic and photoacoustic tomography , 2007 .

[53]  P. Burgholzer,et al.  Photoacoustic tomography using a fiber based Fabry-Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method , 2007, European Conference on Biomedical Optics.

[54]  Otmar Scherzer,et al.  THERMOACOUSTIC TOMOGRAPHY AND THE CIRCULAR RADON TRANSFORM: EXACT INVERSION FORMULA , 2007 .

[55]  Leonid Kunyansky A series solution and a fast algorithm for the inversion of the spherical mean Radon transform , 2007 .

[56]  Rakesh,et al.  The spherical mean value operator with centers on a sphere , 2007 .

[57]  Minghua Xu,et al.  Erratum: Universal back-projection algorithm for photoacoustic computed tomography [Phys. Rev. E 71, 016706 (2005)] , 2007 .

[58]  Markus Haltmeier,et al.  Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector. , 2007, Applied optics.

[59]  Markus Haltmeier,et al.  Inversion of Spherical Means and the Wave Equation in Even Dimensions , 2007, SIAM J. Appl. Math..

[60]  Lihong V. Wang,et al.  Biomedical Optics: Principles and Imaging , 2007 .

[61]  Peter Kuchment,et al.  Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed , 2007, 0706.0598.

[62]  M. Haltmeier,et al.  Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Peter Kuchment,et al.  On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography , 2007 .

[64]  Peter Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[65]  Lihong V. Wang,et al.  38 Thermoacoustic Reconstruction in Acoustically Heterogeneous Media with the Aid of Ultrasound Tomography , 2009 .

[66]  Lihong V. Wang Photoacoustic imaging and spectroscopy , 2009 .