Simplified Efficient Point and Interval Estimators for Weibull Parameters
暂无分享,去创建一个
[1] Julius Lieblein,et al. On the Exact Evaluation of the Variances and Covariances of Order Statistics in Samples from the Extreme-Value Distribution , 1953 .
[2] J. Lieblein,et al. Statistical Investigation of the Fatigue Life of Deep-Groove Ball Bearings , 1956 .
[3] N. Mann,et al. A men goodness-of-fit test for the two-parameter wetbull or extreme-value distribution with unknown parameters , 1973 .
[4] Bradford F. Kimball. THE BIAS IN CERTAIN ESTIMATES OF THE PARAMETERS OF THE EXTREME-VALUE DISTRIBUTION , 1956 .
[5] Nancy R. Mann,et al. Tables for Obtaining Weibull Confidence Bounds and Tolerance Bounds Based on Best Linear Invariant Estimates of Parameters of the Extreme-Value Distribution , 1973 .
[6] P. Patnaik. THE NON-CENTRAL χ2- AND F-DISTRIBUTIONS AND THEIR APPLICATIONS , 1949 .
[7] Nancy R. Mann,et al. Tables for Obtaining the Best Linear Invariant Estimates of Parameters of the Weibull Distribution , 1967 .
[8] Lee J. Bain,et al. Some Complete and Censored Sampling Results for the Weibull or Extreme-Value Distribution , 1973 .
[9] F. Mosteller. On Some Useful "Inefficient" Statistics , 1946 .
[10] Nancy R. Mann,et al. Approximately Optimum Confidence Bounds on Series- and Parallel-system Reliability for Systems with Binomial Subsystem Data , 1974 .
[11] L. J. Bain. Inferences Based on Censored Sampling From the Weibull or Extreme-Value Distribution , 1972 .
[12] A Note on WilsonHilferty Transformation of χ2 , 1961 .
[13] Albert H. Moore,et al. Maximum-Likelihood Estimation, from Doubly Censored Samples, of the Parameters of the First Asymptotic Distribution of Extreme Values , 1968 .
[14] Charles E. Antle,et al. Statistical Inference From Censored Weihull Samples , 1972 .
[15] N. Mann. Point and Interval Estimation Procedures for the Two-Parameter Weibull and Extreme-Value Distributions , 1968 .
[16] L. J. Bain,et al. Some Results on Point Estimation for the Two-Parameter Weibull or Extreme-Value Distribution , 1974 .
[17] Frank E. Grubbs,et al. Approximately optimum confidence bounds on series system reliability for exponential time to failure data , 1972 .
[18] E. B. Wilson,et al. The Distribution of Chi-Square. , 1931, Proceedings of the National Academy of Sciences of the United States of America.
[19] Frank E. Grubbs,et al. Approximate Fiducial Bounds for the Reliability of a Series System for Which Each Component has an Exponential Time-to-Fail Distribution , 1971 .
[20] Frank E. Grubbs,et al. Approximate Circular and Noncircular Offset Probabilities of Hitting , 1964 .
[21] S. S. Wilks. Determination of Sample Sizes for Setting Tolerance Limits , 1941 .
[22] M.A.J. Van Montfort,et al. On testing that the distribution of extremes is of type I when type II is the alternative , 1970 .
[23] J. Lawless. Conditional versus Unconditional Confidence Intervals for the Parameters of the Weibull Distribution , 1973 .
[24] L. K. Chan,et al. Optimum quantiles for the linear estimation of the parameters of the extreme value distribution in complete and censored samples , 1969 .
[25] Nancy R. Mann,et al. Optimum Estimators for Linear Functions of Location and Scale Parameters , 1969 .
[26] Khatab M. Hassanein,et al. Simultaneous Estimation of the Parameters of the Extreme Value Distribution by Sample Quantiles , 1972 .
[27] N. Mann. RESULTS ON LOCATION AND SCALE PARAMETER ESTIMATION WITH APPLICATION TO THE EXTREME-VALUE DISTRIBUTION , 1967 .