A Deterministic Attitude Estimation Using a Single Vector Information and Rate Gyros

This paper proposes a deterministic estimator for the estimation of the attitude of a rigid body. A deterministic estimator uses a minimal set of information and does not try to minimize a cost function or lit the measurements into a stochastic process. The proposed estimator obtains the attitude estimation utilizing only the properties of the rotational group SO(3). The information set required by the proposed estimator is a single vector information and rate gyro readings. For systems in which one of the rotational freedom is constrained, the proposed estimator provides an accurate estimate of the reduced attitude. The performance of the algorithm is verilied on different experimental testbeds.

[1]  S. Shankar Sastry,et al.  A mathematical introduction to robotics manipulation , 1994 .

[2]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[3]  F. Aghili,et al.  Driftless 3-D Attitude Determination and Positioning of Mobile Robots By Integration of IMU With Two RTK GPSs , 2013, IEEE/ASME Transactions on Mechatronics.

[4]  Francesco Bullo,et al.  On Coordinate-Free Rotation Decomposition: Euler Angles About Arbitrary Axes , 2012, IEEE Transactions on Robotics.

[5]  N. McClamroch,et al.  Rigid-Body Attitude Control , 2011, IEEE Control Systems.

[6]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[7]  Malcolm D. Shuster Survey of attitude representations , 1993 .

[8]  Robert E. Mahony,et al.  Nonlinear Complementary Filters on the Special Orthogonal Group , 2008, IEEE Transactions on Automatic Control.

[9]  Taeyoung Lee,et al.  Geometric tracking control of a quadrotor UAV on SE(3) , 2010, 49th IEEE Conference on Decision and Control (CDC).

[10]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[11]  M. Grewal,et al.  How Good Is Your Gyro [Ask the Experts] , 2010, IEEE Control Systems.

[12]  H. D. Black,et al.  A passive system for determining the attitude of a satellite , 1964 .

[13]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[14]  Nojan Madinehi,et al.  Rigid Body Att itude Estimation: An Overview and Comparative Study , 2013 .

[15]  James R. Wertz,et al.  Spacecraft attitude determination and control , 1978 .

[16]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[17]  M. Shuster,et al.  Three-axis attitude determination from vector observations , 1981 .

[18]  M. Shuster A survey of attitude representation , 1993 .

[19]  Malcolm D. Shuster,et al.  The quest for better attitudes , 2006 .

[20]  Vijay Kumar,et al.  Vision-based state estimation for autonomous rotorcraft MAVs in complex environments , 2013, 2013 IEEE International Conference on Robotics and Automation.

[21]  Arun D. Mahindrakar,et al.  Position Stabilization and Waypoint Tracking Control of Mobile Inverted Pendulum Robot , 2014, IEEE Transactions on Control Systems Technology.

[22]  Malcolm D. Shuster,et al.  Deterministic Three-Axis Attitude Determination , 2004 .

[23]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[24]  G. Wahba A Least Squares Estimate of Satellite Attitude , 1965 .

[25]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .