A procedure for the detection and removal of cloud shadow from AVHRR data over land

Although the accurate detection of cloud shadow in AVHRR scenes is important for many atmospheric and terrestrial applications, relatively little work in this area has appeared in the literature. This paper presents a new multispectral algorithm for cloud shadow detection and removal in daytime AVHRR scenes over land. It uses a combination of geometric and optical constraints, derived from the pixel-by-pixel cross-track geometry of the scene and image analysis methods to detect cloud shadow. The procedure works well in tropical and midlatitude regions under varying atmospheric conditions (wet-dry) and with different types of terrain. Results also show that underdetected cloud shadow ran produce errors of 30-40% in observed reflectances for affected pixels. Moreover, radiative transfer calculations show that the effects of cloud shadow are comparable to or exceed those of aerosol contamination for affected pixels. The procedure is computationally efficient and hence could be used to produce improved weather forecast, land cover, and land analysis products. The method is not intended for use under conditions of poor solar illumination and/or poor viewing geometry.

[1]  K. Kidwell NOAA polar orbiter data (TIROS-N, NOAA-6, NOAA-7, NOAA-8, NOAA-9, and NOAA-10) users guide , 1986 .

[2]  James J. Simpson,et al.  Image masking using polygon fills and morphological transformations , 1992 .

[3]  Stanley Q. Kidder,et al.  Assimilation of GOES-derived solar insolation into a mesoscale model for studies of cloud shading effects , 1995 .

[4]  J. D. Tarpley,et al.  Global vegetation indices from the NOAA-7 meteorological satellite , 1984 .

[5]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[6]  William L. Smith,et al.  Improved Cloud Motion Wind Vector and Altitude Assignment Using VAS. , 1983 .

[7]  J. R. Stitt,et al.  Improved estimates of the areal extent of snow cover from AVHRR data , 1998 .

[8]  James J. Simpson,et al.  Reduction of noise in AVHRR channel 3 data with minimum distortion , 1994, IEEE Trans. Geosci. Remote. Sens..

[9]  James J. Simpson,et al.  Automated cloud screening of AVHRR imagery using split-and-merge clustering☆ , 1991 .

[10]  Garik Gutman,et al.  Vegetation indices from AVHRR: An update and future prospects , 1991 .

[11]  P. Ketner,et al.  Terrestrial primary production and phytomass , 1979 .

[12]  Jason I. Gobat,et al.  Improved cloud detection for daytime AVHRR scenes over land , 1996 .

[13]  S. Hess Introduction to theoretical meteorology , 1959 .

[14]  Ghassem R. Asrar,et al.  Estimation of total above-ground phytomass production using remotely sensed data , 1985 .

[15]  James J. Simpson,et al.  The Tile and General Research Imaging System (TIGRIS) , 1996, IEEE Trans. Geosci. Remote. Sens..

[16]  Manfred Owe,et al.  Vegetation spatial variability and its effect on vegetation indices , 1987 .

[17]  Rand McNally,et al.  The international atlas , 1977 .

[18]  B. J. Mason Clouds, rain, and rainmaking , 1962 .

[19]  Bruce A. Wielicki,et al.  Cumulus cloud base height estimation from high spatial resolution Landsat data: a Hough transform approach , 1992, IEEE Trans. Geosci. Remote. Sens..

[20]  A. Belward,et al.  The Best Index Slope Extraction ( BISE): A method for reducing noise in NDVI time-series , 1992 .

[21]  L. Lauritson,et al.  Data extraction and calibration of TIROS-N/NOAA radiometers , 1979 .

[22]  James J. Simpson,et al.  An automated cloud screening algorithm for daytime advanced very high resolution radiometer imagery , 1990 .

[23]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[24]  J. J. Simpson,et al.  Improved Cloud Detection in Along Track Scanning Radiometer (ATSR) Data over the Ocean , 1998 .

[25]  C. Justice,et al.  Analysis of the phenology of global vegetation using meteorological satellite data , 1985 .

[26]  Roger A. Pielke,et al.  Evaluation of Cloud Shading Effects on the Generation and Modification of Mesoscale Circulations , 1986 .

[27]  C. Tucker,et al.  AVHRR for Monitoring Global Tropical Deforestation , 1989 .

[28]  Yoram J. Kaufman,et al.  Atmospheric correction against algorithm for NOAA-AVHRR products: theory and application , 1992, IEEE Trans. Geosci. Remote. Sens..

[29]  Alan E. Lipton Cloud Shading Retrieval and Assimilation in a Satellite-Model Coupled Mesoscale Analysis System , 1993 .

[30]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[31]  R. Pech,et al.  Reflectance modelling and the derivation of vegetation indices for an Australian semi-arid shrubland , 1986 .

[32]  B. Pinty,et al.  The potential contribution of satellite remote sensing to the understanding of arid lands processes , 1991 .

[33]  James J. Simpson,et al.  On the accurate detection and enhancement of oceanic features observed in satellite data , 1990 .

[34]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1987 .

[35]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[36]  Charlotte M. Gurney The use of contextual information to detect cumulus clouds and cloud shadows in Landsat data , 1982 .