On Glowinski’s Open Question on the Alternating Direction Method of Multipliers
暂无分享,去创建一个
Xiaoming Yuan | Min Tao | M. Tao | X. Yuan
[1] Leon O. Chua,et al. Linear and nonlinear circuits , 1987 .
[2] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[3] M. Fortin,et al. On decomposition - coordination methods using an augmented Lagrangian , 1983 .
[4] Jonathan Eckstein. Some Saddle-function splitting methods for convex programming , 1994 .
[5] A. Stuart,et al. Portfolio Selection: Efficient Diversification of Investments , 1959 .
[6] Bingsheng He,et al. Convergence Study on the Symmetric Version of ADMM with Larger Step Sizes , 2016, SIAM J. Imaging Sci..
[7] Bingsheng He,et al. Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities , 1998, Oper. Res. Lett..
[8] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[9] M. H. Xu. Proximal Alternating Directions Method for Structured Variational Inequalities , 2007 .
[10] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[11] Su Zhang,et al. A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs , 2010, Eur. J. Oper. Res..
[12] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[13] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[14] R. Tyrrell Rockafellar,et al. Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..
[15] Jonas Schmitt. Portfolio Selection Efficient Diversification Of Investments , 2016 .
[16] Daniel Boley,et al. Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or Linear Programs , 2013, SIAM J. Optim..
[17] Xiaoming Yuan,et al. On the O(1/t) Convergence Rate of Alternating Direction Method with Logarithmic-Quadratic Proximal Regularization , 2012, SIAM J. Optim..
[18] M. Fiedler. Bounds for the determinant of the sum of hermitian matrices , 1971 .
[19] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[20] E. G. Gol'shtein,et al. Modified Lagrangians in Convex Programming and their Generalizations , 1979 .
[21] Wotao Yin,et al. Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..
[22] R. Glowinski. Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .
[23] M. J. D. Powell,et al. A method for nonlinear constraints in minimization problems , 1969 .
[25] Noah H. Rhee,et al. On the equality of algebraic and geometric multiplicities of matrix eigenvalues , 2011, Appl. Math. Lett..
[26] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[27] Caihua Chen,et al. Extended ADMM and BCD for nonseparable convex minimization models with quadratic coupling terms: convergence analysis and insights , 2015, Mathematical Programming.
[28] D. Gabay. Applications of the method of multipliers to variational inequalities , 1983 .
[29] Bingsheng He,et al. A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..
[30] Michael Elad,et al. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..
[31] Arthur R. Bergen,et al. Power Systems Analysis , 1986 .
[32] Min Tao,et al. Rigorous convergence analysis of alternating variable minimization with multiplier methods for quadratic programming problems with equality constraints , 2016 .
[33] Roland Glowinski,et al. On Alternating Direction Methods of Multipliers: A Historical Perspective , 2014, Modeling, Simulation and Optimization for Science and Technology.
[34] Xiaoming Yuan,et al. Local Linear Convergence of the Alternating Direction Method of Multipliers for Quadratic Programs , 2013, SIAM J. Numer. Anal..
[35] R. Bhatia. Matrix Analysis , 1996 .
[36] M. Hestenes. Multiplier and gradient methods , 1969 .
[37] Xiaoming Yuan,et al. The generalized proximal point algorithm with step size 2 is not necessarily convergent , 2018, Comput. Optim. Appl..
[38] Jonathan Eckstein. Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results , 2012 .
[39] C. Eden. BookOn systems analysis : David Berlinski 186 pages, £ 10.25 (Cambridge, Mass, and London, MIT Press, 1976)☆ , 1978 .
[40] Matthias Ehrgott,et al. Interactive decision support in radiation therapy treatment planning , 2011, OR Spectr..
[41] Carl D. Meyer,et al. Matrix Analysis and Applied Linear Algebra , 2000 .
[42] Masao Fukushima,et al. Some Reformulations and Applications of the Alternating Direction Method of Multipliers , 1994 .