Radiogenomic classification of the 1p/19q status in presumed low-grade gliomas
暂无分享,去创建一个
Stefan Klein | Wiro J. Niessen | Marion Smits | Sebastian R. van der Voort | Renske Gahrmann | Martin J. van den Bent | Arnaud J. P. E. Vincent
[1] G. Reifenberger,et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.
[2] Yoshua Bengio,et al. Inference for the Generalization Error , 1999, Machine Learning.
[3] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[4] O. Chinot,et al. Multimodal MR Imaging (Diffusion, Perfusion, and Spectroscopy): Is It Possible to Distinguish Oligodendroglial Tumor Grade and 1p/19q Codeletion in the Pretherapeutic Diagnosis? , 2013, American Journal of Neuroradiology.
[5] S. Plevritis,et al. Glioblastoma Multiforme: Exploratory Radiogenomic Analysis by Using Quantitative Image Features. , 2015, Radiology.
[6] H Duffau,et al. Temozolomide for low-grade gliomas , 2007, Neurology.
[7] J. IIVARINENHelsinki. Efficiency of Simple Shape Descriptors , 1997 .
[8] P. Lambin,et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach , 2014, Nature Communications.
[9] Daniel L. Rubin,et al. A Comprehensive Descriptor of Shape: Method and Application to Content-Based Retrieval of Similar Appearing Lesions in Medical Images , 2012, Journal of Digital Imaging.
[10] Carol Walker,et al. Apparent diffusion coefficients in oligodendroglial tumors characterized by genotype , 2007, Journal of magnetic resonance imaging : JMRI.
[11] Max A. Viergever,et al. elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.