Indicator reactions of K and Na activities in the upper mantle: Natural mineral assemblages, experimental data, and thermodynamic modeling

[1]  J. Russell,et al.  Heat capacity of hydrous trachybasalt from Mt Etna: comparison with CaAl2Si2O8 (An)–CaMgSi2O6 (Di) as basaltic proxy compositions , 2015, Contributions to Mineralogy and Petrology.

[2]  A. Perchuk,et al.  Omphacite paradox in mantle peridotites , 2015 .

[3]  L. Bindi,et al.  Merwinite-structured phases as a potential host of alkalis in the upper mantle , 2015, Contributions to Mineralogy and Petrology.

[4]  A. Sokol,et al.  Conditions of phlogopite formation upon interaction of carbonate melts with peridotite of the subcratonic lithosphere , 2015, Doklady Earth Sciences.

[5]  V. Kamenetsky,et al.  Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent , 2015 .

[6]  R. Stalder,et al.  The formation of saline mantle fluids by open-system crystallization of hydrous silicate-rich vein assemblages – Evidence from fluid inclusions and their host phases in MARID xenoliths from the central Kaapvaal Craton, South Africa , 2014 .

[7]  Alok K. Gupta Origin of Potassium-rich Silica-deficient Igneous Rocks , 2014 .

[8]  L. Aranovich,et al.  Alkali control of high-grade metamorphism and granitization , 2014 .

[9]  M. Frezzotti,et al.  CO2, carbonate-rich melts, and brines in the mantle , 2014 .

[10]  H. Kagi,et al.  Merwinite in diamond from São Luiz, Brazil: A new mineral of the Ca-rich mantle environment , 2014 .

[11]  M. Coltorti,et al.  Crystal chemistry of amphiboles: implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica , 2013, Contributions to Mineralogy and Petrology.

[12]  Cassian Pirard,et al.  Experimentally determined stability of alkali amphibole in metasomatised dunite at sub-arc pressures , 2014, Contributions to Mineralogy and Petrology.

[13]  J. Bodinier,et al.  Orogenic, ophiolitic and abyssal peridotites , 2014 .

[14]  O. Safonov,et al.  Interaction of model peridotite with H2O-KCl fluid: Experiment at 1.9 GPa and its implications for upper mantle metasomatism , 2013, Petrology.

[15]  V. Kamenetsky,et al.  Parental carbonatitic melt of the Koala kimberlite (Canada): Constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate , 2013 .

[16]  C. Manning,et al.  Brine-assisted anatexis: Experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions , 2013 .

[17]  Tetsuo Kobayashi,et al.  Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab , 2013, Proceedings of the National Academy of Sciences.

[18]  A. Giuliani,et al.  Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle , 2012 .

[19]  D. Castelli,et al.  Water content and nature of solutes in shallow-mantle fluids from fluid inclusions , 2012 .

[20]  S. V. Kovyazin,et al.  The composition of melt and fluid inclusions in spinel of peridotite xenoliths from Avacha volcano (Kamchatka) , 2012, Doklady Earth Sciences.

[21]  R. Luth,et al.  Phase relations of phlogopite with magnesite from 4 to 8 GPa , 2012, Contributions to Mineralogy and Petrology.

[22]  O. Safonov Kamafugite melts as products of interaction between peridotite and chloride-carbonate liquids at pressures 1–7 GPa , 2011 .

[23]  Roger Powell,et al.  An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids , 2011 .

[24]  A. Girnis,et al.  Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle , 2011 .

[25]  R. Luth,et al.  Effect of KCl on melting in the Mg2SiO4–MgSiO3–H2O system at 5 GPa , 2011 .

[26]  R. Luth,et al.  Effect of KCl on melting in the Mg 2 SiO 4 MgSiO 3 H 2 O syste , 2011 .

[27]  A. Peccerillo,et al.  Chlorine-rich metasomatic H2O-CO2 fluids in amphibole-bearing peridotites from Injibara (Lake Tana region, Ethiopian plateau): nature and evolution of volatiles in the mantle of a region of continental flood basalts. , 2010 .

[28]  A. Bobrov,et al.  Peridotite–eclogite–carbonatite systems at 7.0–8.5 GPa: concentration barrier of diamond nucleation and syngenesis of its silicate and carbonate inclusions , 2009 .

[29]  A. Rosenthal,et al.  The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar , 2009 .

[30]  V. Kamenetsky,et al.  Chlorine from the mantle: Magmatic halides in the Udachnaya-East kimberlite, Siberia , 2009 .

[31]  W. Griffin,et al.  A new model for the evolution of diamond-forming fluids , 2009 .

[32]  V. Shatsky,et al.  Evidence for multistage evolution in a xenolith of diamond-bearing eclogite from the Udachnaya kimberlite pipe , 2008 .

[33]  L. Bindi,et al.  Synthetic hypersilicic Cl-bearing mica in the phlogopite-celadonite join: A multimethodical characterization of the missing link between di- and tri-octahedral micas at high pressures , 2008 .

[34]  R. Stalder,et al.  Hydrogen incorporation in enstatite in the system MgO–SiO2–H2O–NaCl , 2008 .

[35]  V. Shatsky,et al.  Chloride-carbonate fluid in diamonds from the eclogite xenolith , 2007 .

[36]  L. Bindi,et al.  Incorporation of Fe3+ in phase-X, A2–xM2Si2O7Hx, a potential high-pressure K-rich hydrous silicate in the mantle , 2007, Mineralogical Magazine.

[37]  GBoncn E. Hlnr-ow K in clinopyroxene at high pressure and temperature : An experimental study , 2007 .

[38]  SrepHeN E. Heccpnry,et al.  Lindsleyite ( Ba ) and mathiasite ( K ) : two new chromium-titanates in the crichtonite series from the upper mantle , 2007 .

[39]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[40]  R. Carlson The mantle and core , 2005 .

[41]  K. Ikehata,et al.  Metasomatic formation of kosmochlor-bearing diopside in peridotite xenoliths from North Island, New Zealand , 2004 .

[42]  A. Sobolev,et al.  Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle , 2004 .

[43]  L. Beccaluva,et al.  Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica , 2004 .

[44]  L. Taylor,et al.  Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia , 2004 .

[45]  P. Ulmer,et al.  Generation and differentiation of group II kimberlites: constraints from a high-pressure experimental study to 10 GPa , 2002 .

[46]  Y. Litvin,et al.  Experimental investigation of the effect of metasomatism by carbonatic melt on the composition and structure of the deep mantle , 2002 .

[47]  W. Griffin,et al.  Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes , 2001 .

[48]  D. Günther,et al.  Modal metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U–Pb zircon dating of metasomatized peridotites and MARID-type xenoliths , 2000 .

[49]  V. N. Sobolev,et al.  Quantifying the Effects of Metasomatism in Mantle Xenoliths: Constraints from Secondary Chemistry and Mineralogy in Udachnaya Eclogites, Yakutia , 1999 .

[50]  J. Konzett,et al.  The Stability of Hydrous Potassic Phases in Lherzolitic Mantle—an Experimental Study to 9.5 GPa in Simplified and Natural Bulk Compositions , 1999 .

[51]  D. Green,et al.  Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions , 1999 .

[52]  D. Green,et al.  Carbonatite metasomatism in the southeastern Australian lithosphere , 1998 .

[53]  Wuyi Wang Formation of diamond with mineral inclusions of “mixed” eclogite and peridotite paragenesis , 1998 .

[54]  J. Konzett,et al.  Potassium Amphibole Stability in the Upper Mantle: an Experimental Study in a Peralkaline KNCMASH System to 8.5 GPa , 1997 .

[55]  R. C. Newton,et al.  H2O activity in concentrated KCl and KCl-NaCl solutions at high temperatures and pressures measured by the brucite-periclase equilibrium , 1997 .

[56]  W. Heinrich,et al.  Experimental Na-K distribution between amphiboles and aqueous chloride solutions, and a mixing model along the richterite – K-richterite join , 1997 .

[57]  S. O’Reilly,et al.  Feldspar-bearing lherzolite xenoliths in alkali basalts from Hamar-Daban, southern Baikal region, Russia , 1995 .

[58]  A. Yasuda,et al.  Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa , 1994 .

[59]  V. N. Sobolev,et al.  Diamondiferous Eclogites from the Udachnaya Kimberlite Pipe, Yakutia , 1994 .

[60]  D. Bosch,et al.  Metasomatic hydrous fluids in amphibole peridotites from Zabargad Island (Red Sea) , 1993 .

[61]  R. Powell,et al.  A Compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600°C , 1991 .

[62]  A. Crawford,et al.  Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia , 1991 .

[63]  R. Barnett,et al.  The paragenesis of upper-mantle xenoliths from the Quaternary volcanics south-east of Gees, West Eifel, Germany , 1991, Mineralogical Magazine.

[64]  Y. Thibault,et al.  Patent mantle-metasomatism: Inferences based on experimental studies , 1990 .

[65]  D. Canil,et al.  Origin of Phlogopite in Mantle Xenoliths from Kostal Lake, Wells Gray Park, British Columbia , 1989 .

[66]  K. E. Windom,et al.  Stability of the assemblage albite plus forsterite at high temperatures and pressures with petrologic implications , 1988 .

[67]  C. Neal The Origin and Composition of Metasomatic Fluids and Amphiboles beneath Malaita, Solomon Islands , 1988 .

[68]  W. Griffin,et al.  Mantle metasomatism beneath western Victoria, Australia. I. Metasomatic processes in Cr-diopside lherzolites , 1988 .

[69]  A. J. Erlank,et al.  Assessment of the Vertical Extent and Distribution of Mantle Metasomatism below Kimberley, South Africa , 1988 .

[70]  A. D. Edgar,et al.  Sodium-rich metasomatism in the upper mantle: Implications of experiments on the pyrolite-Na2O-rich fluid system at 950°C, 20 kbar , 1987 .

[71]  V. Naumov,et al.  Fluidized CO2-sulphide-silicate media as agents of mantle metasomatism and megacrysts formation: evidence from a large druse in a spinel-lherzolite xenolith , 1987 .

[72]  J. Dautria,et al.  Amphibole-rich xenoliths and host alkali basalts: petrogenetic constraints and implications on the recent evolution of the upper mantle beneath Ahaggar (Central Sahara, Southern Algeria) , 1987 .

[73]  D. K. Bailey Mantle metasomatism—perspective and prospect , 1987, Geological Society, London, Special Publications.

[74]  S. Arai K/Na Variation in Phlogopite and Amphibole of Upper Mantle Peridotites Due to Fractionation of the Metasomatizing Fluids , 1986, The Journal of Geology.

[75]  W. Griffin,et al.  The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism , 1984 .

[76]  J. Dawson Contrasting Types of Upper-Mantle Metasomatism? , 1984 .

[77]  J. Smyth,et al.  Lindsleyite (Ba) and mathiasite (K): two new chromium-titanates in the crichtonite series from the upper mantle , 1983 .

[78]  R. Mitchell,et al.  Priderite-bearing xenoliths from the Prairie Creek mica peridotite, Arkansas , 1983 .

[79]  B. Harte Mantle peridotites and processes ― the kimberlite sample , 1983 .

[80]  A. Jones,et al.  Mantle Metasomatism in 14 Veined Peridotites from Bultfontein Mine, South Africa , 1982, The Journal of Geology.

[81]  D. Bailey Mantle metasomatism—continuing chemical change within the Earth , 1982, Nature.

[82]  J. Dawson,et al.  Upper-mantle amphiboles: a review , 1982, Mineralogical Magazine.

[83]  D. Eggler,et al.  Stability of sanidine + forsterite and its bearing on the genesis of potassic magmas and the distribution of potassium in the upper mantle , 1980 .

[84]  J. Dawson,et al.  Chemistry of micas from kimberlites and xenoliths—II. Primary- and secondary-textured micas from peridotite xenoliths , 1980 .

[85]  D. Francis The Origin of Amphibole in Lherzolite Xenoliths from Nunivak Island, Alaska , 1976 .

[86]  K. Aoki Origin of phlogopite and potassic richterite bearing peridotite xenoliths from South Africa , 1975 .

[87]  F. Lloyd,et al.  Light element metasomatism of the continental mantle: The evidence and the consequences , 1975 .

[88]  D. A. Carswell Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths , 1975 .

[89]  R. Varne Hornblende lherzolite and the upper mantle , 1970 .

[90]  I. Kushiro,et al.  Origin of some eclogite inclusions in kimberlite , 1968 .