Modified Jacobi-Bernstein basis transformation and its application to multi-degree reduction of Bézier curves

[1]  Rudolf Winkel,et al.  On a generalization of Bernstein polynomials and Bézier curves based on umbral calculus (III): Blossoming , 2016, Comput. Aided Geom. Des..

[2]  Khosrow Maleknejad,et al.  Application of two-dimensional Bernstein polynomials for solving mixed Volterra–Fredholm integral equations , 2015 .

[3]  Dumitru Baleanu,et al.  A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations , 2015, J. Comput. Phys..

[4]  Young Joon Ahn,et al.  Limit curve of H-Bézier curves and rational Bézier curves in standard form with the same weight , 2015, J. Comput. Appl. Math..

[5]  Lizheng Lu,et al.  Gram matrix of Bernstein basis: Properties and applications , 2015, J. Comput. Appl. Math..

[6]  M. Zaky,et al.  Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation , 2014, Nonlinear Dynamics.

[7]  Xuli Han,et al.  Normalized B-basis of the space of trigonometric polynomials and curve design , 2015, Appl. Math. Comput..

[8]  Ali H. Bhrawy,et al.  A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations , 2015, J. Comput. Phys..

[9]  Ali H. Bhrawy,et al.  On Generalized Jacobi-Bernstein Basis Transformation: Application of Multidegree Reduction of Bézier Curves and Surfaces , 2014, J. Comput. Inf. Sci. Eng..

[10]  H. Jafari,et al.  Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials , 2014, TheScientificWorldJournal.

[11]  Aysegül Akyüz-Dascioglu,et al.  Bernstein Collocation Method for Solving Nonlinear Fredholm-Volterra Integrodifferential Equations in the Most General Form , 2014, J. Appl. Math..

[12]  Liqing Liu,et al.  Numerical solution for the variable order linear cable equation with Bernstein polynomials , 2014, Appl. Math. Comput..

[13]  John A. Evans,et al.  Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis , 2014, 1404.7155.

[14]  Lian Zhou,et al.  Optimal multi-degree reduction of Bézier curves with geometric constraints , 2014, Comput. Aided Des..

[15]  S. H. Behiry,et al.  Solution of nonlinear Fredholm integro-differential equations using a hybrid of block pulse functions and normalized Bernstein polynomials , 2014, J. Comput. Appl. Math..

[16]  Y. Simsek A new class of polynomials associated with Bernstein and beta polynomials , 2014 .

[17]  Eid H. Doha,et al.  Jacobi-Gauss-Lobatto collocation method for the numerical solution of l+l nonlinear Schrödinger equations , 2014, J. Comput. Phys..

[18]  Dumitru Baleanu,et al.  A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations , 2014 .

[19]  Lizheng Lu,et al.  Explicit G2-constrained degree reduction of Bézier curves by quadratic optimization , 2013, J. Comput. Appl. Math..

[20]  M. Alipour,et al.  Bps Operational Matrices For Solving Time Varying Fractional Optimal Control Problems , 2013 .

[21]  Stephen Mann,et al.  Linear methods for G1, G2, and G3 - Multi-degree reduction of Bézier curves , 2013, Comput. Aided Des..

[22]  Yiming Chen,et al.  Bernstein Polynomials Method for Fractional Convection-Diffusion Equation with Variable Coefficients , 2012 .

[23]  S. Rutkauskas On the solvability conditions of the first boundary value problem for a system of elliptic equations that strongly degenerate at a point , 2011 .

[24]  Eid H. Doha,et al.  Integrals of Bernstein polynomials: An application for the solution of high even-order differential equations , 2011, Appl. Math. Lett..

[25]  Ali H. Bhrawy,et al.  On the Derivatives of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations , 2011 .

[26]  Ben-yu Guo,et al.  Generalized Jacobi Rational Spectral Method and Its Applications , 2010, J. Sci. Comput..

[27]  Philip W. Livermore,et al.  Galerkin orthogonal polynomials , 2010, J. Comput. Phys..

[28]  Pawel Wozny,et al.  Multi-degree reduction of Bézier curves with constraints, using dual Bernstein basis polynomials , 2009, Comput. Aided Geom. Des..

[29]  Lian Zhou,et al.  Constrained multi-degree reduction of Bézier surfaces using Jacobi polynomials , 2009, Comput. Aided Geom. Des..

[30]  Guozhao Wang,et al.  Application of Chebyshev II-Bernstein basis transformations to degree reduction of Bézier curves , 2008 .

[31]  Abedallah Rababah,et al.  The weighted dual functionals for the univariate Bernstein basis , 2007, Appl. Math. Comput..

[32]  Guozhao Wang,et al.  Optimal multi-degree reduction of Bézier curves with G2-continuity , 2006, Comput. Aided Geom. Des..

[33]  Jie Shen,et al.  Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials , 2006, J. Sci. Comput..

[34]  Rene F. Swarttouw,et al.  Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.

[35]  Hasik Sunwoo,et al.  Matrix representation for multi-degree reduction of Be'zier curves , 2005, Comput. Aided Geom. Des..

[36]  Young Joon Ahn,et al.  Constrained polynomial degree reduction in the L2-norm equals best weighted Euclidean approximation of Bézier coefficients , 2004, Comput. Aided Geom. Des..

[37]  Byung-Gook Lee,et al.  Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction , 2002, Comput. Aided Geom. Des..

[38]  Guodong Chen,et al.  Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity , 2002, Comput. Aided Geom. Des..

[39]  Rida T. Farouki,et al.  Legendre-Bernstein basis transformations , 2000 .

[40]  Rida T. Farouki,et al.  On the optimal stability of the Bernstein basis , 1996, Math. Comput..

[41]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[42]  Rida T. Farouki,et al.  Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..

[43]  J. Rice,et al.  The Approximation of Functions, Vol. 1: Linear Theory , 1965 .

[44]  Hossein Jafari,et al.  FRACTIONAL ORDER OPTIMAL CONTROL PROBLEMS VIA THE OPERATIONAL MATRICES OF BERNSTEIN POLYNOMIALS , 2014 .

[45]  Hossein Jafari,et al.  SOLVING MULTI-TERM ORDERS FRACTIONAL DIFFERENTIAL EQUATIONS BY OPERATIONAL MATRICES OF BPs WITH CONVERGENCE ANALYSIS , 2013 .

[46]  A. Rababah Integration of Jacobi and Weighted Bernstein Polynomials Using Bases Transformations , 2007 .

[47]  Abedallah Rababah,et al.  Jacobi-Bernstein Basis Transformation , 2004 .

[48]  A. Rababah Transformation of Chebyshev–Bernstein Polynomial Basis , 2003 .

[49]  Bert Jüttler,et al.  The dual basis functions for the Bernstein polynomials , 1998, Adv. Comput. Math..

[50]  Bernard R Gelbaum,et al.  Modern real and complex analysis , 1992 .

[51]  E. Cheney Introduction to approximation theory , 1966 .

[52]  J. Rice The approximation of functions , 1964 .