Efficient One-Way Secret-Key Agreement and Private Channel Coding via Polarization

We introduce explicit schemes based on the polarization phenomenon for the task of secret-key agreement from common information and one-way public communication as well as for the task of private channel coding. Our protocols are distinct from previously known schemes in that they combine two practically relevant properties: they achieve the ultimate rate--defined with respect to a strong secrecy condition--and their complexity is essentially linear in the blocklength. However, we are not able to give an efficient algorithm for code construction.

[1]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[2]  Alexander Vardy,et al.  Achieving the secrecy capacity of wiretap channels using Polar codes , 2010, ISIT.

[3]  Ueli Maurer,et al.  Unconditionally Secure Key Agreement and the Intrinsic Conditional Information , 1999, IEEE Trans. Inf. Theory.

[4]  U. Maurer The Strong Secret Key Rate of Discrete Random Triples , 1994 .

[5]  Rudolf Ahlswede,et al.  Common Randomness in Information Theory and Cryptography - Part II: CR Capacity , 1998, IEEE Trans. Inf. Theory.

[6]  Thomas M. Cover,et al.  Elements of Information Theory: Cover/Elements of Information Theory, Second Edition , 2005 .

[7]  Masahito Hayashi,et al.  Construction of wiretap codes from ordinary channel codes , 2010, 2010 IEEE International Symposium on Information Theory.

[8]  Imre Csiszár,et al.  Topics in Information Theory , 1976 .

[9]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[10]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[11]  Emre Telatar,et al.  Polar codes for q-ary source coding , 2010, 2010 IEEE International Symposium on Information Theory.

[12]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[13]  Emre Telatar,et al.  Polarization for arbitrary discrete memoryless channels , 2009, 2009 IEEE Information Theory Workshop.

[14]  Joseph M. Renes,et al.  Achieving the capacity of any DMC using only polar codes , 2012, 2012 IEEE Information Theory Workshop.

[15]  Onur Ozan Koyluoglu,et al.  Polar coding for secure transmission and key agreement , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[16]  Aria Ghasemian Sahebi,et al.  Multilevel polarization of polar codes over arbitrary discrete memoryless channels , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[17]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[18]  Ran Canetti,et al.  Advances in Cryptology – CRYPTO 2012 , 2012, Lecture Notes in Computer Science.

[19]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[20]  Renato Renner,et al.  New Bounds in Secret-Key Agreement: The Gap between Formation and Secrecy Extraction , 2003, EUROCRYPT.

[21]  Remi A. Chou,et al.  Polar coding for secret-key generation , 2013, 2013 IEEE Information Theory Workshop (ITW).

[22]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  Alexander Vardy,et al.  Constructing polar codes for non-binary alphabets and MACs , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[24]  Emmanuel Abbe,et al.  Randomness and dependencies extraction via polarization , 2011, 2011 Information Theory and Applications Workshop.

[25]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[26]  Andreas J. Winter,et al.  The Quantum Capacity With Symmetric Side Channels , 2008, IEEE Transactions on Information Theory.

[27]  Victor Shoup Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings , 2005, CRYPTO.

[28]  Bart Preneel,et al.  Advances in cryptology - EUROCRYPT 2000 : International Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000 : proceedings , 2000 .

[29]  Ueli Maurer,et al.  Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free , 2000, EUROCRYPT.

[30]  Graeme Smith,et al.  Additive extensions of a quantum channel , 2007, 2008 IEEE Information Theory Workshop.

[31]  Alexander Vardy,et al.  Semantic Security for the Wiretap Channel , 2012, CRYPTO.

[32]  Shlomo Shamai,et al.  Secrecy-achieving polar-coding , 2010, 2010 IEEE Information Theory Workshop.

[33]  Mikael Skoglund,et al.  Nested Polar Codes for Wiretap and Relay Channels , 2010, IEEE Communications Letters.

[34]  Junya Honda,et al.  Polar coding without alphabet extension for asymmetric channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[35]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[36]  Thomas Holenstein,et al.  One-Way Secret-Key Agreement and Applications to Circuit Polarization and Immunization of Public-Key Encryption , 2005, CRYPTO.

[37]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[38]  Alexander Vardy,et al.  A new polar coding scheme for strong security on wiretap channels , 2013, 2013 IEEE International Symposium on Information Theory.

[39]  Joseph M. Renes,et al.  Efficient quantum channel coding scheme requiring no preshared entanglement , 2013, 2013 IEEE International Symposium on Information Theory.

[40]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[41]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[42]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.