Positivity-preserving DG and central DG methods for ideal MHD equations
暂无分享,去创建一个
Liwei Xu | Jianxian Qiu | Fengyan Li | Yue Cheng | Liwei Xu | Fengyan Li | Yue Cheng | J. Qiu
[1] Chi-Wang Shu,et al. The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .
[2] J. M. Ball,et al. SHOCK WAVES AND REACTION‐DIFFUSION EQUATIONS (Grundlehren der mathematischen Wissenschaften, 258) , 1984 .
[3] Cheng Wang,et al. Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations , 2012, J. Comput. Phys..
[4] Chi-Wang Shu,et al. On positivity preserving finite volume schemes for Euler equations , 1996 .
[5] Chi-Wang Shu,et al. Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations , 2005, J. Sci. Comput..
[6] Dinshaw S. Balsara. Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics , 2009, J. Comput. Phys..
[7] Chi-Wang Shu,et al. Central Discontinuous Galerkin Methods on Overlapping Cells with a Nonoscillatory Hierarchical Reconstruction , 2007, SIAM J. Numer. Anal..
[8] Dinshaw S. Balsara,et al. Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics , 2012, J. Comput. Phys..
[9] Paul R. Woodward,et al. A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations , 1998 .
[10] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[11] Xiangxiong Zhang,et al. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..
[12] Dinshaw S. Balsara,et al. Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .
[13] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[14] Kenneth G. Powell,et al. AN APPROXIMATE RIEMANN SOLVER FOR MAGNETOHYDRODYNAMICS (That Works in More than One Dimension) , 1994 .
[15] K. Waagan,et al. A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics , 2009, J. Comput. Phys..
[16] P. Janhunen,et al. A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods , 2000 .
[17] Katharine Gurski,et al. An HLLC-Type Approximate Riemann Solver for Ideal Magnetohydrodynamics , 2001, SIAM J. Sci. Comput..
[18] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[19] Dinshaw S. Balsara,et al. Notes on the Eigensystem of Magnetohydrodynamics , 1996, SIAM J. Appl. Math..
[20] Dinshaw S. Balsara. A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..
[21] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[22] Michael Dumbser,et al. Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.
[23] Sergey Yakovlev,et al. Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field , 2011, J. Comput. Phys..
[24] Xiangxiong Zhang,et al. On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..
[25] Liwei Xu,et al. Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations , 2012, J. Comput. Phys..
[26] Zhiliang Xu,et al. Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells , 2009, J. Comput. Phys..
[27] Sergey Yakovlev,et al. Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations , 2013, J. Comput. Sci..
[28] G. Tóth,et al. Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2007 .
[29] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .