A Dual Algorithm for Stochastic Control Problems: Applications to Uncertain Volatility Models and CVA

We derive an algorithm in the spirit of Rogers [SIAM J. Control Optim., 46 (2007), pp. 1116--1132] and Davis and Burstein [Stochastics Stochastics Rep., 40 (1992), pp. 203--256] that leads to upper bounds for stochastic control problems. Our bounds complement lower biased estimates recently obtained in Guyon and Henry-Labordere [J. Comput. Finance, 14 (2011), pp. 37--71]. We evaluate our estimates in numerical examples motivated by mathematical finance.

[1]  N. Krylov,et al.  Approximating Value Functions for Controlled Degenerate Diffusion Processes by Using Piece-Wise Constant Policies , 1999 .

[2]  R. Handel,et al.  Constructing Sublinear Expectations on Path Space , 2012, 1205.2415.

[3]  H. Soner,et al.  Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.

[4]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[5]  Paul Gassiat,et al.  Stochastic control with rough paths , 2013, 1303.7160.

[6]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[7]  Nizar Touzi,et al.  Optimal Stopping under Nonlinear Expectation , 2012, 1209.6601.

[8]  M. Avellaneda,et al.  Pricing and hedging derivative securities in markets with uncertain volatilities , 1995 .

[9]  Pierre Henry-Labordere,et al.  Uncertain Volatility Model: A Monte-Carlo Approach , 2010 .

[10]  Liu Qie-gen Adapted solutions of backward stochastic differential equations driven by general martingale under non-Lipschitz condition , 2013 .

[11]  Terry Lyons,et al.  Uncertain volatility and the risk-free synthesis of derivatives , 1995 .

[12]  N. Krylov On the rate of convergence of finite-difference approximations for Bellmans equations with variable coefficients , 2000 .

[13]  L. C. G. Rogers,et al.  Pathwise Stochastic Optimal Control , 2007, SIAM J. Control. Optim..

[14]  Nizar Touzi,et al.  Wellposedness of second order backward SDEs , 2010, 1003.6053.

[15]  Giovanna Nappo,et al.  On the Moments of the Modulus of Continuity of Itô Processes , 2009 .

[16]  Huyên Pham,et al.  A numerical algorithm for fully nonlinear HJB equations: An approach by control randomization , 2013, Monte Carlo Methods Appl..

[17]  N. Touzi,et al.  Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II , 2012, 1210.0007.

[18]  Nizar Touzi,et al.  A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs , 2009, 0905.1863.

[19]  Mark H. A. Davis,et al.  A Deterministic Approach To Stochastic Optimal Control With Application To Anticipative Control , 1992 .

[20]  Julien Guyon,et al.  Nonlinear Option Pricing , 2013 .