A Dual Algorithm for Stochastic Control Problems: Applications to Uncertain Volatility Models and CVA
暂无分享,去创建一个
Zhenjie Ren | Christian Litterer | Pierre Henry-Labordère | P. Henry-Labordère | Zhenjie Ren | C. Litterer
[1] N. Krylov,et al. Approximating Value Functions for Controlled Degenerate Diffusion Processes by Using Piece-Wise Constant Policies , 1999 .
[2] R. Handel,et al. Constructing Sublinear Expectations on Path Space , 2012, 1205.2415.
[3] H. Soner,et al. Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.
[4] S. Peng,et al. Adapted solution of a backward stochastic differential equation , 1990 .
[5] Paul Gassiat,et al. Stochastic control with rough paths , 2013, 1303.7160.
[6] B. Bouchard,et al. Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .
[7] Nizar Touzi,et al. Optimal Stopping under Nonlinear Expectation , 2012, 1209.6601.
[8] M. Avellaneda,et al. Pricing and hedging derivative securities in markets with uncertain volatilities , 1995 .
[9] Pierre Henry-Labordere,et al. Uncertain Volatility Model: A Monte-Carlo Approach , 2010 .
[10] Liu Qie-gen. Adapted solutions of backward stochastic differential equations driven by general martingale under non-Lipschitz condition , 2013 .
[11] Terry Lyons,et al. Uncertain volatility and the risk-free synthesis of derivatives , 1995 .
[12] N. Krylov. On the rate of convergence of finite-difference approximations for Bellmans equations with variable coefficients , 2000 .
[13] L. C. G. Rogers,et al. Pathwise Stochastic Optimal Control , 2007, SIAM J. Control. Optim..
[14] Nizar Touzi,et al. Wellposedness of second order backward SDEs , 2010, 1003.6053.
[15] Giovanna Nappo,et al. On the Moments of the Modulus of Continuity of Itô Processes , 2009 .
[16] Huyên Pham,et al. A numerical algorithm for fully nonlinear HJB equations: An approach by control randomization , 2013, Monte Carlo Methods Appl..
[17] N. Touzi,et al. Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II , 2012, 1210.0007.
[18] Nizar Touzi,et al. A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs , 2009, 0905.1863.
[19] Mark H. A. Davis,et al. A Deterministic Approach To Stochastic Optimal Control With Application To Anticipative Control , 1992 .
[20] Julien Guyon,et al. Nonlinear Option Pricing , 2013 .