A simple model of quantum trajectories

Quantum trajectory theory, developed largely in the quantum optics community to describe open quantum systems subjected to continuous monitoring, has applications in many areas of quantum physics. I present a simple model, using two-level quantum systems (q-bits), to illustrate the essential physics of quantum trajectories and how different monitoring schemes correspond to different “unravelings” of a mixed state master equation. I also comment briefly on the relationship of the theory to the consistent histories formalism and to spontaneous collapse models.

[1]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[2]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[3]  W. Zurek Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .

[4]  Gisin,et al.  Decoherent histories and quantum state diffusion. , 1995, Physical review letters.

[5]  Todd A. Brun Quantum Jumps as Decoherent Histories , 1997 .

[6]  Zagury,et al.  Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection. , 1990, Physical review letters.

[7]  Robert B. Griffiths,et al.  Consistent histories and the interpretation of quantum mechanics , 1984 .

[8]  Milburn,et al.  Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[9]  Andrei N. Soklakov,et al.  Preparation information and optimal decompositions for mixed quantum states , 2000, quant-ph/0002027.

[10]  L. Di'osi,et al.  Continuous quantum measurement and itô formalism , 1988, 1812.11591.

[11]  Todd A. Brun Continuous measurements, quantum trajectories, and decoherent histories , 2000 .

[12]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[13]  Quantum state diffusion, localization and computation , 1995, quant-ph/9506039.

[14]  Robert B. Griffiths Choice of Consistent Family, and Quantum Incompatibility , 1998 .

[15]  Detection of spacetime fluctuation by a model interferometer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  P. Pearle Reduction of the state vector by a nonlinear Schrödinger equation , 1976 .

[17]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[18]  E. Joos,et al.  The emergence of classical properties through interaction with the environment , 1985 .

[19]  D. Averin Quantum Computing and Quantum Measurement with Mesoscopic Josephson Junctions , 2000, quant-ph/0008114.

[20]  Lajos Diósi,et al.  Localized solution of a simple nonlinear quantum Langevin equation , 1988 .

[21]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[22]  S. Haroche,et al.  Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment , 2001, quant-ph/0105062.

[23]  P. Pearle Toward explaining why events occur , 1979 .

[24]  Quantum spacetime fluctuations and primary state diffusion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[25]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[26]  N. Gisin Quantum measurements and stochastic processes , 1984 .

[27]  Roland Omnès The Interpretation of Quantum Mechanics , 1987 .

[28]  Ian C. Percival,et al.  Quantum state diffusion, localization and quantum dispersion entropy , 1993 .

[29]  W. Zurek The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .

[30]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[31]  Gardiner,et al.  Wave-function quantum stochastic differential equations and quantum-jump simulation methods. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[32]  H. Carmichael An open systems approach to quantum optics , 1993 .

[33]  M. A. Rowe,et al.  Recent Results in Trapped-Ion Quantum Computing , 2001 .

[34]  H. D. Zeh Why Bohm's Quantum Theory? , 1998 .

[35]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[36]  I. Percival Primary state diffusion , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[37]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[38]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[39]  Decoherence of quantum wave packets due to interaction with conformal space–time fluctuations , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  Generalized stochastic Schrödinger equations for state vector collapse , 2001, quant-ph/0103037.

[41]  Zoller,et al.  Monte Carlo simulation of the atomic master equation for spontaneous emission. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[42]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[43]  Griffiths Consistent histories and quantum reasoning. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[44]  Gardiner,et al.  Decoherence, continuous observation, and quantum computing: A cavity QED model. , 1995, Physical review letters.

[45]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[46]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[47]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[48]  W. Zurek Environment-induced superselection rules , 1982 .