A High-mass Protobinary System with Spatially Resolved Circumstellar Accretion Disks and Circumbinary Disk

High-mass multiples might form via fragmentation of self-gravitational disks or alternative scenarios such as disk-assisted capture. However, only few observational constraints exist on the architecture and disk structure of high-mass protobinaries and their accretion properties. Here we report the discovery of a close ($57.9\pm0.2$mas=170au) high-mass protobinary, IRAS17216-3801, where our VLTI/GRAVITY+AMBER near-infrared interferometry allows us to image the circumstellar disks around the individual components with 3 milliarcsecond resolution. We estimate the component masses to $\sim20$ and $\sim18 M_{\odot}$ and find that the radial intensity profiles can be reproduced with an irradiated disk model, where the inner regions are excavated of dust, likely tracing the dust sublimation region in these disks. The circumstellar disks are strongly misaligned with respect to the binary separation vector, which indicates that the tidal forces did not have time to realign the disks, pointing towards a young dynamical age of the system. We constrain the distribution of the Br$\gamma$ and CO-emitting gas using VLTI/GRAVITY spectro-interferometry and VLT/CRIRES spectro-astrometry and find that the secondary is accreting at a higher rate than the primary. VLT/NACO imaging shows $L'$-band emission on 3-4 times larger scales than the binary separation, matching the expected dynamical truncation radius for the circumbinary disk. The IRAS17216-3801 system is $\sim3\times$ more massive and $\sim5\times$ more compact than other high-mass multiplies imaged at infrared wavelengths and the first high-mass protobinary system where circumstellar and circumbinary dust disks could be spatially resolved. This opens exciting new opportunities for studying star-disk interactions and the role of multiplicity in high-mass star formation.

[1]  Rebecca G. Martin,et al.  TIDAL TORQUES ON MISALIGNED DISKS IN BINARY SYSTEMS , 2014, 1412.7741.

[2]  G. Fuller,et al.  The Direct Detection of a (Proto)Binary/Disk System in IRAS 20126+4104 , 2005, astro-ph/0508342.

[3]  S. Kraus,et al.  The multiplicity of massive stars in the Orion Nebula Cluster as seen with long-baseline interferometry , 2013, 1301.3045.

[4]  H. Zinnecker,et al.  A spectroscopic survey on the multiplicity of high-mass stars , 2012, 1205.5238.

[5]  G. Duvert,et al.  Optimised data reduction for the AMBER/VLTI instrument , 2009 .

[6]  M. Robberto,et al.  The VLTI/MIDI survey of massive young stellar objects: Sounding the inner regions around intermediate-and high-mass young stars using mid-infrared interferometry , 2013, 1308.4282.

[7]  K. Menten,et al.  A hot compact dust disk around a massive young stellar object , 2010, Nature.

[8]  R. Neri,et al.  A study of the Keplerian accretion disk and precessing outflow in the massive protostar IRAS 20126+4104 , 2005 .

[9]  S. Lumsden,et al.  CO bandhead emission of massive young stellar objects: determining disc properties , 2012, 1212.0554.

[10]  J. Conway,et al.  A Circumstellar Disk in a High-Mass Star-forming Region , 2004 .

[11]  Hans Zinnecker,et al.  The Birth of High-Mass Stars: Accretion and/or Mergers? , 2005 .

[12]  Gerd Weigelt,et al.  An image reconstruction method (IRBis) for optical/infrared interferometry , 2014 .

[13]  C. Clarke,et al.  Star–disc interactions and binary star formation , 1991 .

[14]  Kaitlin M. Kratter,et al.  Fragmentation of massive protostellar discs , 2006 .

[15]  L. Testi,et al.  Accretion in brown dwarfs: An infrared view , 2004 .

[16]  J. Caswell Positions of hydroxyl masers at 1665 and 1667 MHz , 1998 .

[17]  Collisions and close encounters involving massive main-sequence stars , 2006, astro-ph/0602042.

[18]  Qizhou Zhang,et al.  Hot ammonia around young O-type stars - I. JVLA imaging of NH3 (6, 6) to (14, 14) in NGC 7538 IRS1 , 2014, 1410.5448.

[19]  David Mouillet,et al.  AMBER : Instrument description and first astrophysical results Special feature AMBER , the near-infrared spectro-interferometric three-telescope VLTI instrument , 2007 .

[20]  H. Beuther,et al.  A KEPLERIAN-LIKE DISK AROUND THE FORMING O-TYPE STAR AFGL 4176 , 2015, 1509.08469.

[21]  I. A. Bonnell,et al.  Observational implications of precessing protostellar discs and jets , 2000 .

[22]  Gerhard Fischer,et al.  CRIRES: a high-resolution infrared spectrograph for ESO's VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[23]  David Mouillet,et al.  NAOS, the first AO system of the VLT: on-sky performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[24]  I. Bonnell,et al.  ACCRETION DURING BINARY STAR FORMATION. II : GASEOUS ACCRETION AND DISC FORMATION , 1997 .

[25]  C. Goddi,et al.  A multiple system of high-mass YSOs surrounded by disks in NGC 7538 IRS1 - Gas dynamics on scales of 10–700 AU from CH3OH maser and NH3 thermal lines , 2014, 1404.3957.

[26]  Gerard Zins,et al.  SearchCal: a Virtual Observatory tool for searching calibrators in optical long-baseline interferometry II. The faint-object case , 2006 .

[27]  R. Indebetouw,et al.  Interpreting Spectral Energy Distributions from Young Stellar Objects. I. A Grid of 200,000 YSO Model SEDs , 2006, astro-ph/0608234.

[28]  E. Tatulli,et al.  AMBER : Instrument description and first astrophysical results Special feature Interferometric data reduction with AMBER / VLTI . Principle , estimators , and illustration , 2007 .

[29]  R. Klein,et al.  The Formation of Massive Star Systems by Accretion , 2009, Science.

[30]  J. Papaloizou,et al.  On the dynamics of tilted discs around young stars , 1995 .

[31]  John D. Monnier,et al.  ON THE NATURE OF THE HERBIG B[e] STAR BINARY SYSTEM V921 SCORPII: GEOMETRY AND KINEMATICS OF THE CIRCUMPRIMARY DISK ON SUB-AU SCALES , 2012, 1204.1969.

[32]  F. P. Schloerb,et al.  Infrared Imaging of Capella with the IOTA Closure Phase Interferometer , 2005 .

[33]  H. Yorke,et al.  On the Formation of Massive Stars , 2002, astro-ph/0201041.

[34]  Astronomy,et al.  Tracing jet emission at the base of a high-mass YSO. First AMBER/VLTI observations of the Br\gamma emission in IRAS 13481-6124 , 2016, 1603.06860.

[35]  E. E. Baart,et al.  OH masers associated wth IRAS far-infrared sources , 1988 .

[36]  Anne-Marie Lagrange,et al.  NAOS-CONICA first on sky results in a variety of observing modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[37]  K. Menten,et al.  Interstellar Hydroxyl Masers in the Galaxy. I. The VLA Survey , 2000 .

[38]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[39]  D. Schertl,et al.  Revealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R CrA ? , 2017 .

[40]  D. Schertl,et al.  Revealing the sub-AU asymmetries of the inner dust rim in the disk around the Herbig Ae star R Coronae Austrinae , 2009, 0911.3653.

[41]  A. Amorim,et al.  GRAVITY data reduction software , 2014, Astronomical Telescopes and Instrumentation.

[42]  J. E. Pringle,et al.  Chaotic star formation and the alignment of stellar rotation with disc and planetary orbital axes , 2010 .