A decade of astrocombs: recent advances in frequency combs for astronomy.

A new regime of precision radial-velocity measurements in the search for Earth-like exoplanets is being facilitated by high-resolution spectrographs calibrated by laser frequency combs. Here we review recent advances in the development of astrocomb technology, and discuss the state of the field going forward.

[1]  Alexander Klenner,et al.  Gigahertz self-referenceable frequency comb from a semiconductor disk laser. , 2014, Optics express.

[2]  Andrew Szentgyorgyi,et al.  Calibration of an echelle spectrograph with an astro-comb: a laser frequency comb with very high repetition rate , 2012, Other Conferences.

[3]  Zhongmin Yang,et al.  3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser. , 2012, Optics letters.

[4]  F. Krausz,et al.  Long-term carrier-envelope-phase-stable few-cycle pulses by use of the feed-forward method. , 2012, Optics letters.

[5]  Michael T. Murphy,et al.  Spatial variation in the fine-structure constant – new results from VLT/UVES , 2012, 1202.4758.

[6]  K. Weingarten,et al.  Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate , 2010 .

[7]  Atomically referenced 1-GHz optical parametric oscillator frequency comb. , 2015, Optics express.

[8]  Takashi Kurokawa,et al.  Direct generation of 12.5-GHz-spaced optical frequency comb with ultrabroad coverage in near-infrared region by cascaded fiber configuration. , 2016, Optics express.

[9]  E. Oliva,et al.  Optical Frequency Comb as a general-purpose and wide-band calibration source for astronomical high resolution infrared spectrographs , 2011 .

[10]  John M Dudley,et al.  Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. , 2002, Optics letters.

[11]  Michel Digonnet,et al.  Self-phase-locked degenerate femtosecond optical parametric oscillator. , 2008, Optics letters.

[12]  Gaspare Lo Curto,et al.  The exoplanet hunter HARPS: unequalled accuracy and perspectives toward 1 cm s-1 precision , 2006, SPIE Astronomical Telescopes + Instrumentation.

[13]  K. Minoshima,et al.  Fully stabilized 750-MHz Yb: fiber frequency comb. , 2017, Optics express.

[14]  Y. Jamil,et al.  Recent advancements in spectroscopy using tunable diode lasers , 2013 .

[15]  Martin E. Fermann,et al.  Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs , 2016 .

[16]  D. Reid,et al.  Femtosecond optical parametric oscillator frequency combs , 2015 .

[17]  Gordon A. H. Walker,et al.  Modal Noise in High‐Resolution, Fiber‐fed Spectra: A Study and Simple Cure , 2001 .

[18]  Atsushi Takada,et al.  Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser. , 2013, Optics express.

[19]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[20]  Ii T. Sizer,et al.  Increase in laser repetition rate by spectral selection , 1989 .

[21]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[22]  Leo W. Hollberg,et al.  Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87rubidium , 2009 .

[23]  A. Kelz,et al.  Astronomical optical frequency comb generation and test in a fiber-fed MUSE spectrograph , 2014, Astronomical Telescopes and Instrumentation.

[24]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[25]  Shinji Yamashita,et al.  Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. , 2011, Optics express.

[26]  O. Hellmig,et al.  Space-borne frequency comb metrology , 2016 .

[27]  Jörg Neumann,et al.  Generation of an astronomical optical frequency comb in three fibre-based nonlinear stages , 2012, Photonics Europe.

[28]  Andrew Szentgyorgyi,et al.  Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb. , 2012, Optics express.

[29]  Andrew Szentgyorgyi,et al.  Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph , 2015 .

[30]  S. Osterman,et al.  Astronomical spectrograph calibration with broad-spectrum frequency combs , 2008, 0803.0565.

[31]  F. Kärtner,et al.  Toward a broadband astro-comb: effects of nonlinear spectral broadening in optical fibers. , 2010, Optics express.

[32]  D. Queloz,et al.  Cosmic dynamics in the era of Extremely Large Telescopes , 2008, 0802.1532.

[33]  R. Holzwarth,et al.  A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph , 2012, 1204.0948.

[34]  A. Reiners,et al.  A laser-lock concept to reach cm s 1 -precision in Doppler experiments with Fabry-Pérot wavelength calibrators , 2014, 1408.6111.

[35]  Anna Frebel,et al.  HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: URSA MAJOR II and COMA BERENICES , 2009, 0902.2395.

[36]  T Dekorsy,et al.  Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy. , 1999, Optics letters.

[37]  Chih-Hao Li,et al.  Broadband dispersion-free optical cavities based on zero group delay dispersion mirror sets. , 2010, Optics express.

[38]  R. A. Probst,et al.  Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph , 2012, Other Conferences.

[39]  Nicolas Buchschacher,et al.  HARPS-N OBSERVES THE SUN AS A STAR , 2015, 1511.02267.

[40]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[41]  Brandon Botzer,et al.  Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb. , 2012, Optics express.

[42]  Éric Depagne,et al.  Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550 to 890 nm. , 2017, Optics express.

[43]  Nicolas Buchschacher,et al.  An astro-comb calibrated solar telescope to search for the radial velocity signature of Venus , 2016, Astronomical Telescopes + Instrumentation.

[44]  Gaspare Lo Curto,et al.  Relative stability of two laser frequency combs for routine operation on HARPS and FOCES , 2016, Astronomical Telescopes + Instrumentation.

[45]  James G. Fujimoto,et al.  Ultrabroadband double-chirped mirror pairs for generation of octave spectra , 2001 .

[46]  R. Holzwarth,et al.  High‐precision wavelength calibration of astronomical spectrographs with laser frequency combs , 2007, astro-ph/0703622.

[47]  T. Südmeyer,et al.  Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser. , 2011, Optics express.

[48]  D. J. Richardson,et al.  Dissemination of an optical frequency comb over fiber with 3 × 10−18 fractional accuracy , 2012, Conference on Lasers and Electro-Optics.

[49]  Andrew Szentgyorgyi,et al.  A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1 , 2008, Nature.

[50]  T. Kasamatsu,et al.  Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror. , 2010, Optics letters.

[51]  F. Kartner,et al.  Fiber-optic Cherenkov radiation in the few-cycle regime , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[52]  Mathias Zechmeister,et al.  Calibrating echelle spectrographs with Fabry-Perot etalons , 2015, 1506.07887.

[53]  Weiqi Wang,et al.  A 23.75-GHz frequency comb with two low-finesse filtering cavities in series for high resolution spectroscopy* , 2015 .

[54]  Andreas Quirrenbach,et al.  Stabilizing a Fabry–Perot Etalon Peak to 3 cm s-1 for Spectrograph Calibration , 2014, 1404.0004.

[55]  Allan Sandage,et al.  The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes. , 1962 .

[56]  G. Erbert,et al.  Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz. , 2012, Optics express.

[57]  Akira Ozawa,et al.  Kerr-lens mode-locked Yb:KYW laser at 3.3-GHz repetition rate , 2012, CLEO 2012.

[58]  Ulrich Hopp,et al.  Stability of the FOCES spectrograph using an astro-frequency comb as calibrator , 2016, Astronomical Telescopes + Instrumentation.

[59]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[60]  Andrew Szentgyorgyi,et al.  Visible wavelength astro-comb. , 2010, Optics express.

[61]  Andrew Szentgyorgyi,et al.  Optimization of filtering schemes for broadband astro-combs. , 2012, Optics express.

[62]  R. P. Butler,et al.  ATTAINING DOPPLER PRECISION OF 3 M S-1 , 1996 .

[63]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[64]  C. Radzewicz,et al.  Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate. , 2009, Optics express.

[65]  Alexander Zybin,et al.  Diode laser atomic absorption spectrometry , 2005 .

[66]  F. Bouchy,et al.  Fundamental photon noise limit to radial velocity measurements , 2001 .

[67]  Clayton R. Locke,et al.  Laser frequency comb techniques for precise astronomical spectroscopy , 2012, 1202.0819.

[68]  Andrew Szentgyorgyi,et al.  Green astro-comb for HARPS-N , 2012, Astronomical Telescopes and Instrumentation.

[69]  S. Osterman,et al.  A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration. , 2010, The Review of scientific instruments.

[70]  S. Diddams,et al.  Octave-spanning Ti:sapphire laser with a repetition rate >1 ghz for optical frequency measurements and comparisons. , 2006, Optics letters.

[71]  Uriel Conod,et al.  Adaptive optics for high resolution spectroscopy: a direct application with the future NIRPS spectrograph , 2016, Astronomical Telescopes + Instrumentation.

[72]  A. Klenner,et al.  A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal. , 2013, Optics express.

[73]  Alexander Klenner,et al.  High peak power gigahertz Yb:CALGO laser. , 2014, Optics express.

[74]  William J. Wadsworth,et al.  Supercontinuum generation in tapered fibers. , 2000, Optics letters.

[75]  Scott A. Diddams,et al.  10-GHz Self-Referenced Optical Frequency Comb , 2009, Science.

[76]  Yohei Kobayashi,et al.  Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y(2)O(3) ceramic laser. , 2015, Optics express.

[77]  A Bartels,et al.  Passively mode-locked 10 GHz femtosecond Ti:sapphire laser. , 2008, Optics letters.

[78]  D. Reid,et al.  Frequency stability of a femtosecond optical parametric oscillator frequency comb. , 2011, Optics express.

[79]  Roberta Ramponi,et al.  Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. , 2008 .

[80]  M. Lipson,et al.  Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides. , 2015, Optics express.

[81]  K. Vahala,et al.  Phase-coherent microwave-to-optical link with a self-referenced microcomb , 2016, Nature Photonics.

[82]  R. A. Probst,et al.  Spectral flattening of supercontinua with a spatial light modulator , 2013, Optics & Photonics - Optical Engineering + Applications.

[83]  Katrin Paschke,et al.  Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9 kW. , 2010, Optics express.

[84]  Zhigang Zhang,et al.  1 GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency. , 2015, Applied optics.

[85]  Marie M. Largay,et al.  A Summary of the GPS Constellation Clock Performance , 2007 .

[86]  Antonio Manescau,et al.  High‐precision calibration of spectrographs , 2010 .

[87]  A. Manescau,et al.  A frequency comb calibrated solar atlas , 2013, 1310.5087.

[88]  K. Cunha,et al.  Chemical Evolution of the Galactic Bulge as Derived from High-Resolution Infrared Spectroscopy of K and M Red Giants , 2006, astro-ph/0607393.

[89]  Derryck T. Reid,et al.  Engineered quasi-phase-matching for second-harmonic generation , 2003 .

[90]  Antonio Manescau,et al.  A spectrograph for exoplanet observations calibrated at the centimetre-per-second level , 2012, Nature.

[91]  Alexander Klenner,et al.  All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers. , 2015, Optics express.

[92]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[93]  P. Plavchan,et al.  Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy , 2016, Nature Communications.

[94]  S. Schilt,et al.  Effect of the carrier-envelope-offset dynamics on the stabilization of a diode-pumped solid-state frequency comb. , 2012, Optics letters.

[95]  Alexander Klenner,et al.  Gigahertz frequency comb from a diode-pumped solid-state laser. , 2014, Optics express.

[96]  F. Grupp,et al.  A compact echelle spectrograph for characterization of astro-combs , 2017 .

[97]  Bruno Chazelas,et al.  A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs , 2012, Other Conferences.

[98]  Christophe Lovis,et al.  Planetary detection limits taking into account stellar noise - I. Observational strategies to reduce stellar oscillation and granulation effects , 2010, 1010.2616.

[99]  W. Seifert,et al.  CARMENES instrument overview , 2014, Astronomical Telescopes and Instrumentation.

[100]  Andrew Szentgyorgyi,et al.  Conjugate Fabry-Perot cavity pair for improved astro-comb accuracy. , 2012, Optics letters.

[101]  T. Hänsch,et al.  14 GHz visible supercontinuum generation: calibration sources for astronomical spectrographs. , 2011, Optics express.

[102]  Tilo Steinmetz,et al.  State of the Field: Extreme Precision Radial Velocities , 2016, 1602.07939.

[103]  Takashi Sukegawa,et al.  Development of compact and ultra-high-resolution spectrograph with multi-GHz optical frequency comb , 2014, Astronomical Telescopes and Instrumentation.

[104]  A. Weiner Ultrafast optical pulse shaping: A tutorial review , 2011 .

[105]  Khaldoun Saleh,et al.  Frequency stability of a wavelength meter and applications to laser frequency stabilization. , 2015, Applied optics.

[106]  Thomas C. Schratwieser,et al.  Highly efficient 1 GHz repetition-frequency femtosecond Yb3+:KY(WO4)2 laser. , 2012, Optics letters.

[107]  T. Hänsch,et al.  Nonlinear amplification of side-modes in frequency combs. , 2013, Optics express.

[108]  Ansgar Reiners,et al.  Comparison of astrophysical laser frequency combs with respect to the requirements of HIRES , 2017, Optical Metrology.

[109]  Andrew Szentgyorgyi,et al.  In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1). , 2010, Optics express.

[110]  A. Ozawa,et al.  6-GHz, Kerr-lens mode-locked Yb:Lu 2 O 3 ceramic laser for comb-resolved broadband spectroscopy , 2013 .

[111]  Rüdiger Paschotta,et al.  Compact Nd:YVO/sub 4/ lasers with pulse repetition rates up to 160 GHz , 2002 .

[112]  H. C. Stempels,et al.  EELT-HIRES the high-resolution spectrograph for the E-ELT , 2016, Astronomical Telescopes + Instrumentation.

[113]  R. Holzwarth,et al.  Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth , 2009 .

[114]  M. Kirchner,et al.  Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[115]  Umit Demirbas,et al.  Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power. , 2010, Optics letters.

[116]  Shinji Yamashita,et al.  10 GHz fundamental mode fiber laser using a graphene saturable absorber , 2012 .