Algorithmic Cognition and the Computational Nature of the Mind

[1]  M. Lecoutre Cognitive models and problem spaces in “purely random” situations , 1992 .

[2]  Jean-Paul Delahaye,et al.  Human behavioral complexity peaks at age 25 , 2017, PLoS Comput. Biol..

[3]  S. Dieguez,et al.  Nothing Happens by Accident, or Does It? A Low Prior for Randomness Does Not Explain Belief in Conspiracy Theories , 2015, Psychological science.

[4]  Ethan L. Schreiber,et al.  Subjective randomness and natural scene statistics , 2010, Psychonomic bulletin & review.

[5]  Jean-Paul Delahaye,et al.  Calculating Kolmogorov Complexity from the Output Frequency Distributions of Small Turing Machines , 2012, PloS one.

[6]  F. Mathy,et al.  Chunking on the fly in working memory and its relationship to intelligence , 2014 .

[7]  Jean-Paul Delahaye,et al.  Two-dimensional Kolmogorov complexity and an empirical validation of the Coding theorem method by compressibility , 2012, PeerJ Comput. Sci..

[8]  N. Cowan,et al.  The Magical Mystery Four , 2010, Current directions in psychological science.

[9]  Hector Zenil,et al.  Life as Thermodynamic Evidence of Algorithmic Structure in Natural Environments , 2012, Entropy.

[10]  Nicolas Gauvrit,et al.  Structure emerges faster during cultural transmission in children than in adults , 2015, Cognition.

[11]  Hector Zenil,et al.  Algorithmic complexity for psychology: a user-friendly implementation of the coding theorem method , 2016, Behavior research methods.

[12]  J. Detre,et al.  Brain Entropy Mapping Using fMRI , 2014, PloS one.

[13]  Hector Zenil,et al.  On the possible Computational Power of the Human Mind , 2006, ArXiv.

[14]  Hector Zenil,et al.  The Information-theoretic and Algorithmic Approach to Human, Animal and Artificial Cognition , 2015, ArXiv.

[15]  Larissa Albantakis,et al.  From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0 , 2014, PLoS Comput. Biol..

[16]  Ernst Mach,et al.  The analysis of sensations and the relation of the physical to the psychical , 1914, The Mathematical Gazette.

[17]  Reznikova Zh.,et al.  Ants and Bits , 2012 .

[18]  Jean-Paul Delahaye,et al.  Algorithmic complexity for short binary strings applied to psychology: a primer , 2011, Behavior Research Methods.

[19]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[20]  G. Tononi,et al.  A Theoretically Based Index of Consciousness Independent of Sensory Processing and Behavior , 2013, Science Translational Medicine.

[21]  Nicolas Gauvrit,et al.  A preference for some types of complexity comment on "perceived beauty of random texture patterns: A preference for complexity". , 2017, Acta psychologica.

[22]  N. Chater The Search for Simplicity: A Fundamental Cognitive Principle? , 1999 .

[23]  F. Hong,et al.  TiO2 Nanoparticles Induced Hippocampal Neuroinflammation in Mice , 2014, PloS one.

[24]  F. Mathy,et al.  What’s magic about magic numbers? Chunking and data compression in short-term memory , 2012, Cognition.

[25]  Boris Ryabko,et al.  The use of ideas of Information Theory for studying "language" and intelligence in ants , 2009, Entropy.

[26]  Nicolas Gauvrit,et al.  The Equiprobability Bias from a Mathematical and Psychological Perspective , 2014, Advances in cognitive psychology.

[27]  Hector Zenil,et al.  Natural scene statistics mediate the perception of image complexity , 2014, ArXiv.

[28]  Boris Ryabko,et al.  Numerical competence in animals, with an insight from ants , 2011 .

[29]  Daniel A. Braun,et al.  Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences , 2014, Front. Hum. Neurosci..

[30]  Hector Zenil,et al.  Approximations of algorithmic and structural complexity validate cognitive-behavioral experimental results , 2015, Frontiers in Computational Neuroscience.