Generalized derivatives of computer programs

ABSTRACT A method for evaluating lexicographical directional (LD)-derivatives of functional programs is presented, extending previous methods to programs containing conditional branches and loops. A language for imperative programs is given, and conditions under which LD-derivatives can be calculated automatically for conditional branches and loops are described, along with a full description of the source transformation procedures necessary.

[1]  Caroline J. Nielsen,et al.  110th Anniversary: A Generalized Nonsmooth Operator for Process Integration , 2019, Industrial & Engineering Chemistry Research.

[2]  Kamil A. Khan Branch-locking AD techniques for nonsmooth composite functions and nonsmooth implicit functions , 2018, Optim. Methods Softw..

[3]  Kamil A. Khan,et al.  Computationally relevant generalized derivatives: theory, evaluation and applications , 2018, Optim. Methods Softw..

[4]  Sham M. Kakade,et al.  Provably Correct Automatic Subdifferentiation for Qualified Programs , 2018, NeurIPS.

[5]  Martin Vuk,et al.  Operational Calculus on Programming Spaces , 2016, 1610.07690.

[6]  Paul I. Barton,et al.  A vector forward mode of automatic differentiation for generalized derivative evaluation , 2015, Optim. Methods Softw..

[7]  Paul I. Barton,et al.  Multistream heat exchanger modeling and design , 2015 .

[8]  Andreas Griewank,et al.  On stable piecewise linearization and generalized algorithmic differentiation , 2013, Optim. Methods Softw..

[9]  Paul I. Barton,et al.  Evaluating an element of the Clarke generalized Jacobian of a composite piecewise differentiable function , 2013, TOMS.

[10]  Francisco Facchinei,et al.  An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions , 2013, Mathematical Programming.

[11]  Sumit Gulwani,et al.  Continuity and robustness of programs , 2012, CACM.

[12]  S. Scholtes Introduction to Piecewise Differentiable Equations , 2012 .

[13]  Sumit Gulwani,et al.  Proving programs robust , 2011, ESEC/FSE '11.

[14]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[15]  Swarat Chaudhuri,et al.  Smooth interpretation , 2010, PLDI '10.

[16]  Sumit Gulwani,et al.  Continuity analysis of programs , 2010, POPL '10.

[17]  Yurii Nesterov,et al.  Lexicographic differentiation of nonsmooth functions , 2005, Math. Program..

[18]  Dick Hamlet,et al.  Continuity in software systems , 2002, ISSTA '02.

[19]  Marko Mäkelä,et al.  Survey of Bundle Methods for Nonsmooth Optimization , 2002, Optim. Methods Softw..

[20]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[21]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[22]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[23]  Paul I. Barton,et al.  Generalized derivatives of dynamic systems with a linear program embedded , 2016, Autom..

[24]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[25]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[26]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .