Théorie algorithmique des nombres et applications à la cryptanalyse de primitives cryptographiques. (Algorithmic Number Theory and Applications to the Cryptanalysis of Cryptographical Primitives)
暂无分享,去创建一个
[1] Douglas H. Wiedemann. Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.
[2] Mihir Bellare,et al. Optimal Asymmetric Encryption , 1994, EUROCRYPT.
[3] B. D. Saunders,et al. Efficient matrix preconditioners for black box linear algebra , 2002 .
[4] Alfred Menezes,et al. Another look at non-standard discrete log and Diffie-Hellman problems , 2008, J. Math. Cryptol..
[5] D. Coppersmith. Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .
[6] Damien Robert,et al. Fonctions thêta et applications à la cryptographie , 2010 .
[7] Emmanuel Thomé,et al. Index Calculus in Class Groups of Non-hyperelliptic Curves of Genus Three , 2008, Journal of Cryptology.
[8] Leonard M. Adleman,et al. A Subexponential Algorithm for Discrete Logarithms over All Finite Fields , 1993, CRYPTO.
[9] Richard P. Brent,et al. Multiple-precision zero-finding methods and the complexity of elementary function evaluation , 1975, ArXiv.
[10] Pierrick Gaudry. Fast genus 2 arithmetic based on Theta functions , 2007, J. Math. Cryptol..
[11] J. Pollard. Factoring with cubic integers , 1993 .
[12] R. G. Swan,et al. Factorization of polynomials over finite fields. , 1962 .
[13] Gaetan Bisson,et al. Endomorphism Rings in Cryptography , 2011 .
[14] Martin Fürer. Faster integer multiplication , 2007, STOC '07.
[15] Tsuyoshi Takagi,et al. Breaking Pairing-Based Cryptosystems Using η T Pairing over GF(397) , 2012, ASIACRYPT.
[16] Richard P. Brent,et al. Ten new primitive binary trinomials , 2008, Math. Comput..
[17] Richard P. Brent,et al. Faster Multiplication in GF(2)[x] , 2008, ANTS.
[18] Richard P. Brent,et al. The great trinomial hunt , 2010, ArXiv.
[19] Arjen K. Lenstra,et al. Factorization of a 768-Bit RSA Modulus , 2010, CRYPTO.
[20] M. G. Bruin,et al. A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .
[21] David Mandell Freeman,et al. Pairing-based identification schemes , 2005, IACR Cryptol. ePrint Arch..
[22] Oliver Schirokauer,et al. Discrete Logarithms: The Effectiveness of the Index Calculus Method , 1996, ANTS.
[23] Nicolas Gürel,et al. An Extension of Kedlaya's Point-Counting Algorithm to Superelliptic Curves , 2001, ASIACRYPT.
[24] Robert D. Silverman. Optimal Parameterization of SNFS , 2007, J. Math. Cryptol..
[25] Jeff Gilchrist,et al. Factorization of a 512-Bit RSA Modulus , 2000, EUROCRYPT.
[26] David Harvey. The Karatsuba integer middle product , 2012, J. Symb. Comput..
[27] Frederik Vercauteren,et al. The Number Field Sieve in the Medium Prime Case , 2006, CRYPTO.
[28] H. W. Lenstra,et al. Factoring integers with elliptic curves , 1987 .
[29] Tibor Juhas. The use of elliptic curves in cryptography , 2007 .
[30] Ueli Maurer,et al. Diffie-Hellman Oracles , 1996, CRYPTO.
[31] Arjen K. Lenstra,et al. NFS with Four Large Primes: An Explosive Experiment , 1995, CRYPTO.
[32] Larry Carter,et al. Localizing non-affine array references , 1999, 1999 International Conference on Parallel Architectures and Compilation Techniques (Cat. No.PR00425).
[33] Pierrick Gaudry,et al. An L(1/3) Discrete Logarithm Algorithm for Low Degree Curves , 2009, Journal of Cryptology.
[34] Thorsten Kleinjung,et al. Using a grid platform for solving large sparse linear systems over GF(2) , 2010, 2010 11th IEEE/ACM International Conference on Grid Computing.
[35] Philippe Flajolet,et al. Random Mapping Statistics , 1990, EUROCRYPT.
[36] Pierrick Gaudry,et al. An Algorithm for Solving the Discrete Log Problem on Hyperelliptic Curves , 2000, EUROCRYPT.
[37] Leonard M. Adleman,et al. A subexponential algorithm for the discrete logarithm problem with applications to cryptography , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[38] Arjen K. Lenstra,et al. Factoring With Two Large Primes , 1990, EUROCRYPT.
[39] Adi Shamir,et al. A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.
[40] Dino J. Lorenzini. An Invitation to Arithmetic Geometry , 1996 .
[41] Florian Hess,et al. Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics , 2002, J. Symb. Comput..
[42] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[43] Igor A. Semaev. An algorithm for evaluation of discrete logarithms in some nonprime finite fields , 1998, Math. Comput..
[44] Jacques Stern,et al. Security Proofs for Signature Schemes , 1996, EUROCRYPT.
[45] Carl Pomerance. The Quadratic Sieve Algorithm , 1985 .
[46] Paul C. van Oorschot,et al. Parallel Collision Search with Cryptanalytic Applications , 2013, Journal of Cryptology.
[47] Jeffrey W. Smith,et al. Reduction of Huge, Sparse Matrices over Finite Fields Via Created Catastrophes , 1992, Exp. Math..
[48] Daniel M. Gordon,et al. Discrete Logarithms in GF(P) Using the Number Field Sieve , 1993, SIAM J. Discret. Math..
[49] Marco Bodrato,et al. Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0 , 2007, WAIFI.
[50] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.
[51] N. Koblitz. Elliptic curve cryptosystems , 1987 .
[52] Andrew V. Sutherland. Accelerating the CM method , 2010, 1009.1082.
[53] Don Coppersmith,et al. Discrete logarithms inGF(p) , 2005, Algorithmica.
[54] Tanja Lange,et al. ECM using Edwards curves , 2012, Math. Comput..
[55] Mihir Bellare,et al. Relations among Notions of Security for Public-Key Encryption Schemes , 1998, IACR Cryptol. ePrint Arch..
[56] Bertil Schmidt,et al. Iterative Sparse Matrix-Vector Multiplication for Integer Factorization on GPUs , 2011, Euro-Par.
[57] Patrick Longa,et al. Efficient Techniques for High-Speed Elliptic Curve Cryptography , 2010, CHES.
[58] Nicolas Thériault,et al. A double large prime variation for small genus hyperelliptic index calculus , 2004, Math. Comput..
[59] Christof Paar,et al. Cantor versus Harley: optimization and analysis of explicit formulae for hyperelliptic curve cryptosystems , 2005, IEEE Transactions on Computers.
[60] Oliver Schirokauer. Virtual logarithms , 2005, J. Algorithms.
[61] Svante Janson,et al. Random graphs , 2000, ZOR Methods Model. Oper. Res..
[62] Emmanuel Thomé,et al. Square Root Algorithms for the Number Field Sieve , 2012, WAIFI.
[63] Shi Bai,et al. Root optimization of polynomials in the number field sieve , 2012, Math. Comput..
[64] Masaaki Shirase,et al. Solving a 676-bit Discrete Logarithm Problem in GF(36n) , 2010, IACR Cryptol. ePrint Arch..
[65] Philippe Flajolet,et al. An Analytic Approach to Smooth Polynominals over Finite Fields , 1998, ANTS.
[66] Don Coppersmith. Modifications to the Number Field Sieve , 2004, Journal of Cryptology.
[67] Jean-Charles Faugère,et al. The arithmetic of Jacobian groups of superelliptic cubics , 2005, Math. Comput..
[68] Antoine Joux,et al. When e-th Roots Become Easier Than Factoring , 2007, ASIACRYPT.
[69] James Demmel,et al. Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
[70] Véronique Cortier,et al. Ballot stuffing in a postal voting system , 2011, 2011 International Workshop on Requirements Engineering for Electronic Voting Systems.
[71] Emmanuel Thomé,et al. Subquadratic Computation of Vector Generating Polynomials and Improvement of the Block Wiedemann Algorithm , 2002, J. Symb. Comput..
[72] PalaiseauDeutschland Franceenge. A General Framework for Subexponential Discrete Logarithm Algorithms , 2000 .
[73] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.
[74] Oliver Schirokauer. The number field sieve for integers of low weight , 2010, Math. Comput..
[75] Robert Harley,et al. Finding Secure Curves with the Satoh-FGH Algorithm and an Early-Abort Strategy , 2001, EUROCRYPT.
[76] P. L. Montgomery. Modular multiplication without trial division , 1985 .
[77] Peter L. Montgomery,et al. Square roots of products of algebraic numbers , 1994 .
[78] Seigo Arita. Gaudry's Variant against Cab Curves , 2000, Public Key Cryptography.
[79] J. Couveignes,et al. Algebraic groups and discrete logarithm , 2001 .
[80] Antoine Joux,et al. Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method , 2003, Math. Comput..
[81] B. Murphy. Polynomial Selection for the Number Field Sieve Integer Factorisation Algorithm , 1999 .
[82] Stefania Cavallar,et al. Strategies in Filtering in the Number Field Sieve , 2000, ANTS.
[83] James A. Davis,et al. Factorization Using the Quadratic Sieve Algorithm , 1983, CRYPTO.
[84] Charles L. Lawson,et al. Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.
[85] David G. Gantor. On arithmetical algorithms over finite fields , 1989 .
[86] Shuhong Gao,et al. Additive Fast Fourier Transforms Over Finite Fields , 2010, IEEE Transactions on Information Theory.
[87] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[88] Emmanuel Thomé,et al. Algorithmes de calcul de logarithmes discrets dans les corps finis , 2003 .
[89] Chanathip Namprempre,et al. The One-More-RSA-Inversion Problems and the Security of Chaum's Blind Signature Scheme , 2003, Journal of Cryptology.
[90] R. Marije Elkenbracht-Huizing,et al. An Implementation of the Number Field Sieve , 1996, Exp. Math..
[91] R. Lercier,et al. A quasi quadratic time algorithm for hyperelliptic curve point counting , 2006 .
[92] H. Lenstra,et al. Factoring integers with the number field sieve , 1993 .
[93] Arjen K. Lenstra,et al. A heterogeneous computing environment to solve the 768-bit RSA challenge , 2010, Cluster Computing.
[94] Michael C. Harrison,et al. An extension of Kedlaya's algorithm for hyperelliptic curves , 2010, J. Symb. Comput..
[95] N. Smart,et al. The equivalence between the DHP and DLP for elliptic curves used in practical applications , 2004 .
[96] Mark Bauer,et al. Point counting on Picard curves in large characteristic , 2005, Math. Comput..
[97] Don Coppersmith,et al. Fast evaluation of logarithms in fields of characteristic two , 1984, IEEE Trans. Inf. Theory.
[98] Pierrick Gaudry,et al. The mpFq library and implementing curve-based key exchanges , 2007 .
[99] Bruce Dodson,et al. 20 Years of ECM , 2006, ANTS.
[100] Kesheng Wu,et al. A Revised Proposal for a Sparse BLAS Toolkit , 1994 .
[101] David G. Cantor,et al. On arithmetical algorithms over finite fields , 1989, Journal of combinatorial theory. Series A.
[102] Jacques Stern,et al. RSA-OAEP Is Secure under the RSA Assumption , 2001, Journal of Cryptology.
[103] Tanja Lange,et al. Arithmetic of Elliptic Curves , 2005 .
[104] Éric Schost,et al. Genus 2 point counting over prime fields , 2012, J. Symb. Comput..
[105] S. Vanstone,et al. Computing Logarithms in Finite Fields of Characteristic Two , 1984 .
[106] Alfred Menezes,et al. Handbook of Applied Cryptography , 2018 .
[107] Arjen K. Lenstra,et al. Factoring by Electronic Mail , 1990, EUROCRYPT.
[108] Emeric Gioan,et al. Mapping Computation with No Memory , 2009, UC.
[109] Whitfield Diffie,et al. New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.
[110] Carl Pomerance,et al. A Tale of Two Sieves , 1998 .
[111] Antoine Joux,et al. New Generic Algorithms for Hard Knapsacks , 2010, EUROCRYPT.
[112] Leonard M. Adleman,et al. Factoring numbers using singular integers , 1991, STOC '91.
[113] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[114] Oliver Schirokauer. The impact of the number field sieve on the discrete logarithm problem in finite fields , 2008 .
[115] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[116] Leonard M. Adleman,et al. A subexponential algorithm for discrete logarithms over the rational subgroup of the jacobians of large genus hyperelliptic curves over finite fields , 1994, ANTS.
[117] Thorsten Kleinjung,et al. On polynomial selection for the general number field sieve , 2006, Math. Comput..
[118] F. Chung,et al. The Diameter of Random Sparse Graphs , 2000 .
[119] Seigo Arita,et al. An addition algorithm in Jacobian of Cab curves , 2003, Discret. Appl. Math..
[120] Jean-Guillaume Dumas,et al. Dense Linear Algebra over Word-Size Prime Fields: the FFLAS and FFPACK Packages , 2006, TOMS.
[121] Emmanuel Thomé,et al. Computation of Discrete Logarithms in F2607 , 2001, ASIACRYPT.
[122] Benjamin A. Smith. Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3 Hyperelliptic Curves, , 2008, Journal of Cryptology.
[123] Tanja Lange,et al. Handbook of Elliptic and Hyperelliptic Curve Cryptography , 2005 .
[124] P. Zimmermann,et al. Speeding up the Division and Square Root of Power Series , 2000 .
[125] Roger Oyono,et al. Fast Arithmetic on Jacobians of Picard Curves , 2004, Public Key Cryptography.
[126] Masaaki Shirase,et al. Solving a 676-Bit Discrete Logarithm Problem in GF(3 6 n ) , 2010 .
[127] Peter L. Montgomery,et al. A Block Lanczos Algorithm for Finding Dependencies Over GF(2) , 1995, EUROCRYPT.
[128] Victor Shoup,et al. OAEP Reconsidered , 2002, Journal of Cryptology.
[129] J. Couveignes. Computing a square root for the number field sieve , 1993 .
[130] Antoine Joux,et al. The Function Field Sieve Is Quite Special , 2002, ANTS.
[131] K. McCurley,et al. A rigorous subexponential algorithm for computation of class groups , 1989 .
[132] A. K. Lenstra,et al. The Development of the Number Field Sieve , 1993 .
[133] Antoine Joux,et al. Oracle-Assisted Static Diffie-Hellman Is Easier Than Discrete Logarithms , 2009, IMACC.
[134] Silvio Micali,et al. A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..
[135] Howard Cheng,et al. Time-and space-efficient evaluation of some hypergeometric constants , 2007, ISSAC '07.
[136] Joachim von zur Gathen,et al. Arithmetic and factorization of polynomial over F2 (extended abstract) , 1996, ISSAC '96.
[137] Joachim von zur Gathen,et al. Polynomial factorization over F2 , 2002, Math. Comput..
[138] Oliver Schirokauer,et al. Using number fields to compute logarithms in finite fields , 2000, Math. Comput..
[139] Nicolas Thériault,et al. Index Calculus Attack for Hyperelliptic Curves of Small Genus , 2003, ASIACRYPT.
[140] Jean-Charles Faugère,et al. Implementing the Arithmetic of C3, 4Curves , 2004, ANTS.
[141] Gerrit Bleumer,et al. Undeniable Signatures , 2011, Encyclopedia of Cryptography and Security.
[142] B. Beckermann,et al. A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..
[143] Oliver Schirokauer. The Special Function Field Sieve , 2002, SIAM J. Discret. Math..
[144] Katherine Yelick,et al. The Optimized Sparse Kernel Interface (OSKI) Library User's Guide for Version 1.0.1h , 2007 .
[145] Daniel J. Bernstein,et al. Curve25519: New Diffie-Hellman Speed Records , 2006, Public Key Cryptography.
[146] Romain Cosset,et al. Applications des fonctions thêta à la cryptographie sur courbes hyperelliptiques. (Applications of theta functions for hyperelliptic curve cryptography) , 2011 .
[147] F. Vercauteren,et al. Computing Zeta Functions of Curves over Finite Fields , 2008 .
[148] J. Pollard,et al. Monte Carlo methods for index computation () , 1978 .
[149] D. V. Matyukhin. On asymptotic complexity of computing discrete logarithms over GF(p) , 2003 .
[150] Robert Harley,et al. Counting Points on Hyperelliptic Curves over Finite Fields , 2000, ANTS.
[151] Leonard M. Adleman,et al. Function Field Sieve Method for Discrete Logarithms over Finite Fields , 1999, Inf. Comput..
[152] Alfred Menezes,et al. Guide to Elliptic Curve Cryptography , 2004, Springer Professional Computing.
[153] Phong Q. Nguyen. A Montgomery-Like Square Root for the Number Field Sieve , 1998, ANTS.
[154] Joris van der Hoeven. The truncated fourier transform and applications , 2004, ISSAC '04.
[155] J. Brillhart,et al. A method of factoring and the factorization of , 1975 .
[156] Tsuyoshi Takagi,et al. Key Length Estimation of Pairing-Based Cryptosystems Using η T Pairing , 2012, ISPEC.
[157] Emmanuel Thomé,et al. Fast computation of linear generators for matrix sequences and application to the block Wiedemann algorithm , 2001, ISSAC '01.
[158] Igor A. Semaev. Special prime numbers and discrete logs in finite prime fields , 2002, Math. Comput..
[159] Andreas Enge,et al. Class Invariants by the CRT Method , 2010, ANTS.
[160] Claus Diem,et al. An Index Calculus Algorithm for Plane Curves of Small Degree , 2006, ANTS.
[161] James Demmel,et al. Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply , 2002, ACM/IEEE SC 2002 Conference (SC'02).
[162] Iain S. Duff,et al. An overview of the sparse basic linear algebra subprograms: The new standard from the BLAS technical forum , 2002, TOMS.
[163] Eun-Jin Im,et al. Model-Based Memory Hierarchy Optimizations for Sparse Matrices , 2007 .
[164] Edlyn Teske. On random walks for Pollard's rho method , 2001, Math. Comput..
[165] 晋輝 趙,et al. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete Math. Appl. (Boca Raton)., Chapman & Hall/CRC, 2006年,xxxiv + 808ページ. , 2009 .
[166] Ryutaroh Matsumoto. Using Cab Curves in the Function Field Sieve , 1999 .
[167] Razvan Barbulescu,et al. Improvements on the Discrete Logarithm Problem in GF(p) , 2011 .
[168] Arjen K. Lenstra,et al. MPQS with Three Large Primes , 2002, ANTS.
[169] Burton S. Kaliski,et al. Server-assisted generation of a strong secret from a password , 2000, Proceedings IEEE 9th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2000).
[170] Igor A. Semaev,et al. An Algorithm to Solve the Discrete Logarithm Problem with the Number Field Sieve , 2006, Public Key Cryptography.
[171] Erich Kaltofen,et al. On randomized Lanczos algorithms , 1997, ISSAC.
[172] Oliver Schirokauer. Discrete logarithms and local units , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[173] Andrew M. Odlyzko,et al. Solving Large Sparse Linear Systems over Finite Fields , 1990, CRYPTO.
[174] GiorgiPascal,et al. Dense Linear Algebra over Word-Size Prime Fields , 2008 .
[175] Theodorus Cornelis Streng,et al. Complex multiplication of abelian surfaces , 2010 .
[176] Arnold Schönhage,et al. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2 , 1977, Acta Informatica.
[177] Andrew V. Sutherland. Computing Hilbert class polynomials with the Chinese remainder theorem , 2009, Math. Comput..
[178] Andrew M. Odlyzko,et al. Discrete Logarithms in Finite Fields and Their Cryptographic Significance , 1985, EUROCRYPT.