Approximating Decoherence Processes for the Design and Simulation of Quantum Error Correction Codes on Classical Computers

Quantum information is prone to suffer from errors caused by the so-called decoherence, which describes the loss in coherence of quantum states associated to their interactions with the surrounding environment. This decoherence phenomenon is present in every quantum information task, be it transmission, processing or even storage of quantum information. Consequently, the protection of quantum information via quantum error correction codes (QECC) is of paramount importance to construct fully operational quantum computers. Understanding environmental decoherence processes and the way they are modeled is fundamental in order to construct effective error correction methods capable of protecting quantum information. Moreover, quantum channel models that are efficiently implementable and manageable on classical computers are required in order to design and simulate such error correction schemes. In this article, we present a survey of decoherence models, reviewing the manner in which these models can be approximated into quantum Pauli channel models, which can be efficiently implemented on classical computers. We also explain how certain families of quantum error correction codes can be entirely simulated in the classical domain, without the explicit need of a quantum computer. A quantum error correction code for the approximated channel is also a correctable code for the original channel, and its performance can be obtained by Monte Carlo simulations on a classical computer.

[1]  R. Werner,et al.  Quantum channels with memory , 2005, quant-ph/0502106.

[2]  C. Macchiavello,et al.  Entanglement-enhanced information transmission over a quantum channel with correlated noise , 2001, quant-ph/0107052.

[3]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[4]  M. Rötteler,et al.  Asymmetric quantum codes: constructions, bounds and performance , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  V. Giovannetti,et al.  Quantum channels and memory effects , 2012, 1207.5435.

[6]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[7]  Amara Katabarwa,et al.  Logical error rate in the Pauli twirling approximation , 2015, Scientific Reports.

[8]  Stefano Mancini,et al.  Capacities of lossy bosonic memory channels. , 2009, Physical review letters.

[9]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[10]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[11]  Stefano Mancini,et al.  Memory effects in attenuation and amplification quantum processes , 2010, 1005.2878.

[12]  Matthias F. Brandl,et al.  A Quantum von Neumann Architecture for Large-Scale Quantum Computing in Systems with Long Coherence Times, such as Trapped Ions , 2017, 1702.02583.

[13]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[15]  Vittorio Giovannetti A dynamical model for quantum memory channels , 2005 .

[16]  Lajos Hanzo,et al.  Quantum Coding Bounds and a Closed-Form Approximation of the Minimum Distance Versus Quantum Coding Rate , 2017, IEEE Access.

[17]  David Poulin,et al.  Quantum Serial Turbo Codes , 2009, IEEE Transactions on Information Theory.

[18]  Joseph Emerson,et al.  Scalable protocol for identification of correctable codes , 2007, 0710.1900.

[19]  I. Fuss,et al.  Quantum Reed-Muller codes , 1997, quant-ph/9703045.

[20]  Lajos Hanzo,et al.  Quantum Turbo Decoding for Quantum Channels Exhibiting Memory , 2018, IEEE Access.

[21]  M Fitzi,et al.  Quantum solution to the Byzantine agreement problem. , 2001, Physical review letters.

[22]  Alán Aspuru-Guzik,et al.  Potential of quantum computing for drug discovery , 2018, IBM J. Res. Dev..

[23]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[24]  Pedro M. Crespo,et al.  Depolarizing Channel Mismatch and Estimation Protocols for Quantum Turbo Codes , 2019, Entropy.

[25]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[26]  Yi Zhao,et al.  Experimental quantum key distribution with decoy states. , 2006, Physical review letters.

[27]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[28]  C. Macchiavello,et al.  Transition behavior in the channel capacity of two-quibit channels with memory , 2004 .

[29]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[30]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[31]  Austin G. Fowler,et al.  Surface code with decoherence: An analysis of three superconducting architectures , 2012, 1210.5799.

[32]  Igor Devetak,et al.  Catalytic Quantum Error Correction , 2014, IEEE Transactions on Information Theory.

[33]  Lov K. Grover From Schrödinger’s equation to the quantum search algorithm , 2001, quant-ph/0109116.

[34]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[35]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[36]  N. Cerf,et al.  Entanglement-enhanced classical capacity of quantum communication channels with memory in arbitrary dimensions , 2006, quant-ph/0603286.

[37]  Decoherence and dephasing in spin-based solid state quantum computers , 2001, cond-mat/0108339.

[38]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[39]  Soon Xin Ng,et al.  Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies , 2015, IEEE Access.

[40]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[41]  R. Feynman Simulating physics with computers , 1999 .

[42]  David Poulin,et al.  Hardness of Decoding Quantum Stabilizer Codes , 2013, IEEE Transactions on Information Theory.

[43]  Zunaira Babar,et al.  Entanglement-Assisted Quantum Turbo Codes , 2010, IEEE Transactions on Information Theory.

[44]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[45]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[46]  Raymond Laflamme,et al.  Symmetrized Characterization of Noisy Quantum Processes , 2007, Science.

[47]  G. Guo,et al.  Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment , 1996, quant-ph/9612003.

[48]  Igor Devetak,et al.  Bounds on classical information capacities for a class of quantum memory channels , 2005 .

[49]  Konrad Banaszek,et al.  Decoherence-Free Subspaces and Subsystems for a Collectively Depolarizing Bosonic Channel , 2005, Open Syst. Inf. Dyn..

[50]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[51]  Travis S. Humble,et al.  Quantum Accelerators for High-Performance Computing Systems , 2017, 2017 IEEE International Conference on Rebooting Computing (ICRC).

[52]  David Daems Entanglement-enhanced transmission of classical information in Pauli channels with memory: Exact solution , 2007 .

[53]  V. Karimipour,et al.  Entanglement and optimal strings of qubits for memory channels , 2006 .

[54]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[55]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[56]  Konrad Banaszek,et al.  Exploiting entanglement in communication channels with correlated noise (9 pages) , 2003, quant-ph/0309148.

[57]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[58]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[59]  H. Lou,et al.  Quantum error-correction using codes with low-density generator matrix , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[60]  S. Mancini,et al.  Quantum channels with a finite memory , 2003, quant-ph/0305010.

[61]  Lajos Hanzo,et al.  EXIT-Chart Aided Quantum Code Design Improves the Normalised Throughput of Realistic Quantum Devices , 2016, IEEE Access.

[62]  Hung Viet Nguyen,et al.  A Survey on Quantum Channel Capacities , 2018, IEEE Communications Surveys & Tutorials.

[63]  Lajos Hanzo,et al.  Duality of Quantum and Classical Error Correction Codes: Design Principles and Examples , 2019, IEEE Communications Surveys & Tutorials.

[64]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[65]  Ryuji Ukai Multi-Step Multi-Input One-Way Quantum Information Processing with Spatial and Temporal Modes of Light , 2014 .

[66]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[67]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[68]  Pedro M. Crespo,et al.  On the Performance of Interleavers for Quantum Turbo Codes , 2019, Entropy.

[69]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.