Plactic relations for r-domino tableaux
暂无分享,去创建一个
[1] Carol Bult,et al. PERMUTATIONS , 1994 .
[2] D. Foata,et al. Combinatoire et Représentation du Groupe Symétrique , 1977 .
[3] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[4] Marcel P. Schützenberger. Quelques remarques sur une Construction de Schensted. , 1963 .
[5] I. Gordon,et al. Edinburgh Research Explorer Quiver Varieties, Category O for Rational Cherednik Algebras, and Hecke Algebras , 2007 .
[6] A. Joseph. On the variety of a highest weight module , 1984 .
[7] D. Vogan. Ordering of the primitive spectrum of a semisimple Lie algebra , 1980 .
[8] Mark Shimozono,et al. A Color-to-Spin Domino Schensted Algorithm , 2001, Electron. J. Comb..
[9] C. Schensted. Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.
[10] Marc van Leeuwen,et al. The Robinson-Schensted and Schützenberger algorithms, an elementary approach , 1995, Electron. J. Comb..
[12] Dan Barbasch,et al. Primitive ideals and orbital integrals in complex classical groups , 1982 .
[13] W. Mcgovern. Left cells and domino tableaux in classical Weyl groups , 1996 .
[14] Iain Gordon,et al. CALOGERO-MOSER SPACE, RESTRICTED RATIONAL CHEREDNIK ALGEBRAS AND TWO-SIDED CELLS. , 2009 .
[15] Hecke Algebras With Unequal Parameters , 2002, math/0208154.
[16] D. Kazhdan,et al. Representations of Coxeter groups and Hecke algebras , 1979 .
[17] T. Pietraho. Knuth relations for the hyperoctahedral groups , 2008, 0803.3335.
[18] G. Lusztig. On Quiver Varieties , 1998 .
[19] Cells and constructible representations in type B , 2007, 0710.3846.
[20] Compositio Mathematica,et al. On the classification of primitive ideals for complex classical Lie algebras, II , 2018 .
[21] T. Pietraho. Equivalence classes in the Weyl groups of type Bn , 2006, math/0607231.