Astrocytes and epilepsy

[1]  D. Muller,et al.  Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells , 2011, Neuropharmacology.

[2]  U. Heinemann,et al.  Blood–brain barrier breakdown-inducing astrocytic transformation: Novel targets for the prevention of epilepsy , 2009, Epilepsy Research.

[3]  S S Cross,et al.  Angiogenesis is associated with the onset of hyperplasia in human ductal breast disease , 2009, British Journal of Cancer.

[4]  M. Shapira,et al.  Transcriptome Profiling Reveals TGF-β Signaling Involvement in Epileptogenesis , 2009, The Journal of Neuroscience.

[5]  Jullie W Pan,et al.  Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients , 2008, Epilepsia.

[6]  D. Attwell,et al.  Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter , 2008, Nature Neuroscience.

[7]  V. Parpura,et al.  Mechanisms of glutamate release from astrocytes , 2008, Neurochemistry International.

[8]  Eleonora Aronica,et al.  Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy , 2008, Neurobiology of Disease.

[9]  A. Williamson,et al.  Glutamate and astrocytes—Key players in human mesial temporal lobe epilepsy? , 2008, Epilepsia.

[10]  Christian Steinhäuser,et al.  Astrocytic function and its alteration in the epileptic brain , 2008, Epilepsia.

[11]  Philippe Coubes,et al.  Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. , 2007, Brain : a journal of neurology.

[12]  F. L. D. Silva,et al.  Complement activation in experimental and human temporal lobe epilepsy , 2007, Neurobiology of Disease.

[13]  Todd A Fiacco,et al.  Selective Stimulation of Astrocyte Calcium In Situ Does Not Affect Neuronal Excitatory Synaptic Activity , 2007, Neuron.

[14]  Alon Friedman,et al.  TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. , 2007, Brain : a journal of neurology.

[15]  D. Spencer,et al.  Changes in glial glutamate transporters in human epileptogenic hippocampus: Inadequate explanation for high extracellular glutamate during seizures , 2007, Neurobiology of Disease.

[16]  E. Aronica,et al.  Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. , 2007, Brain : a journal of neurology.

[17]  D. Spencer,et al.  Increased expression of phosphate-activated glutaminase in hippocampal neurons in human mesial temporal lobe epilepsy , 2007, Acta Neuropathologica.

[18]  J. C. Baayen,et al.  Serial analysis of gene expression in the hippocampus of patients with mesial temporal lobe epilepsy , 2006, Neuroscience.

[19]  D. Bergles,et al.  Synaptic communication between neurons and NG2+ cells , 2006, Current Opinion in Neurobiology.

[20]  D. Spencer,et al.  Differential Glutamate Dehydrogenase (GDH) Activity Profile in Patients with Temporal Lobe Epilepsy , 2006, Epilepsia.

[21]  T. Venkatraman,et al.  Quantitative glutamate spectroscopic imaging of the human hippocampus , 2006, NMR in biomedicine.

[22]  Dennis D. Spencer,et al.  GAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampus , 2006, Acta Neuropathologica.

[23]  N. Rothwell,et al.  The role of inflammation in CNS injury and disease , 2006, British journal of pharmacology.

[24]  N. Lanerolle,et al.  New facets of the neuropathology and molecular profile of human temporal lobe epilepsy , 2005, Epilepsy & Behavior.

[25]  D. Spencer,et al.  MRS Studies of the Role of Altered Glutamate and GABA Neurotransmitter Metabolism in the Pathophysiology of Epilepsy , 2005 .

[26]  Robert G. Shulman,et al.  Brain Energetics and Neuronal Activity: Applications to fMRI and Medicine , 2005 .

[27]  H. Kettenmann,et al.  Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity , 2005, Journal of Cell Science.

[28]  J. Meldolesi,et al.  Astrocytes, from brain glue to communication elements: the revolution continues , 2005, Nature Reviews Neuroscience.

[29]  Fabrice Wendling,et al.  Entorhinal Cortex Involvement in Human Mesial Temporal Lobe Epilepsy: An Electrophysiologic and Volumetric Study , 2005, Epilepsia.

[30]  John H Krystal,et al.  Extracellular metabolites in the cortex and hippocampus of epileptic patients , 2005, Annals of neurology.

[31]  D. Spencer,et al.  Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  P. V. van Rijen,et al.  Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy , 2005, Neurology.

[33]  C. Brosnan,et al.  IL‐1‐regulated responses in astrocytes: Relevance to injury and recovery , 2005, Glia.

[34]  M. Thom,et al.  Quantitative Neuropathology of the Entorhinal Cortex Region in Patients with Hippocampal Sclerosis and Temporal Lobe Epilepsy , 2005, Epilepsia.

[35]  M. Avoli,et al.  Initiation of electrographic seizures by neuronal networks in entorhinal and perirhinal cortices in vitro , 2004, Neuroscience.

[36]  Jullie W Pan,et al.  Mesial temporal lobe epilepsy: a proton magnetic resonance spectroscopy study and a histopathological analysis. , 2004, Journal of neurosurgery.

[37]  K. Willecke,et al.  Distinct types of astroglial cells in the hippocampus differ in gap junction coupling , 2004, Glia.

[38]  Charles L. Wilson,et al.  High‐frequency Oscillations after Status Epilepticus: Epileptogenesis and Seizure Genesis , 2004, Epilepsia.

[39]  D. Spencer,et al.  Distinct electrophysiological alterations in dentate gyrus versus CA1 glial cells from epileptic humans with temporal lobe sclerosis , 2004, Epilepsy Research.

[40]  Christian Steinhäuser,et al.  Enhanced Relative Expression of Glutamate Receptor 1 Flip AMPA Receptor Subunits in Hippocampal Astrocytes of Epilepsy Patients with Ammon's Horn Sclerosis , 2004, The Journal of Neuroscience.

[41]  O. Ottersen,et al.  Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy , 2004, The Lancet.

[42]  D. Spencer,et al.  Increased Expression of Erythropoietin Receptor on Blood Vessels in the Human Epileptogenic Hippocampus with Sclerosis , 2004, Journal of neuropathology and experimental neurology.

[43]  P. Koehler Freud's comparative study of hysterical and organic paralyses: how Charcot's assignment turned out. , 2003, Archives of neurology.

[44]  H. Kimelberg,et al.  Electrophysiologically “complex” glial cells freshly isolated from the hippocampus are immunopositive for the chondroitin sulfate proteoglycan NG2 , 2003, Journal of neuroscience research.

[45]  Dennis D. Spencer,et al.  N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus , 2003, Neurology.

[46]  Anne Williamson,et al.  A Retrospective Analysis of Hippocampal Pathology in Human Temporal Lobe Epilepsy: Evidence for Distinctive Patient Subcategories , 2003, Epilepsia.

[47]  F. Kirchhoff,et al.  Segregated Expression of AMPA-Type Glutamate Receptors and Glutamate Transporters Defines Distinct Astrocyte Populations in the Mouse Hippocampus , 2003, The Journal of Neuroscience.

[48]  D. Rothman,et al.  Neuronal and glial metabolite content of the epileptogenic human hippocampus , 2002, Annals of neurology.

[49]  G. Rondouin,et al.  Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis , 2002, Brain Research.

[50]  C. Elger,et al.  Transcriptional profiling in human epilepsy: expression array and single cell real-time qRT-PCR analysis reveal distinct cellular gene regulation , 2002, Neuroreport.

[51]  C. Steinhäuser,et al.  Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. , 2002, European journal of pharmacology.

[52]  Dennis D Spencer,et al.  Glutamate–glutamine Cycling in the Epileptic Human Hippocampus , 2002, Epilepsia.

[53]  J. Schramm,et al.  Changes in Flip/Flop Splicing of Astroglial AMPA Receptors in Human Temporal Lobe Epilepsy , 2002, Epilepsia.

[54]  N. Abbott,et al.  Astrocyte–endothelial interactions and blood–brain barrier permeability * , 2002 .

[55]  N. Abbott Astrocyte–endothelial interactions and blood–brain barrier permeability , 2002, Journal of anatomy.

[56]  A. Djamshidian,et al.  Altered expression of voltage-dependent calcium channel α1 subunits in temporal lobe epilepsy with Ammon’s horn sclerosis , 2002, Neuroscience.

[57]  E. Benveniste,et al.  Immune function of astrocytes , 2001, Glia.

[58]  J. Pachter,et al.  Characterization of Binding Sites for Chemokines MCP‐1 and MIP‐1α on Human Brain Microvessels , 2000, Journal of neurochemistry.

[59]  C. Elger,et al.  Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances , 2000, The European journal of neuroscience.

[60]  R. Jabs,et al.  Functional and Molecular Properties of Human Astrocytes in Acute Hippocampal Slices Obtained from Patients with Temporal Lobe Epilepsy , 2000, Epilepsia.

[61]  Leif Hertz,et al.  Astrocytes: Glutamate producers for neurons , 1999, Journal of neuroscience research.

[62]  P. Emson,et al.  Expression of the glutamate transporters in human temporal lobe epilepsy , 1999, Neuroscience.

[63]  G. Ojemann,et al.  Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy , 1999, Neurology.

[64]  S. Moshé,et al.  Hippocampal sclerosis revisited , 1998, Brain and Development.

[65]  Harald Sontheimer,et al.  Properties of human glial cells associated with epileptic seizure foci , 1998, Epilepsy Research.

[66]  D. Spencer,et al.  Astrocytes from Human Hippocampal Epileptogenic Foci Exhibit Action Potential–Like Responses , 1998, Epilepsia.

[67]  A. Kivi,et al.  Effects of barium on stimulus induced changes in extracellular potassium concentration in area CA1 of hippocampal slices from normal and pilocarpine-treated epileptic rats , 1998, Neuroscience Letters.

[68]  J. Rothstein,et al.  Distribution of Glutamate Transporter Subtypes During Human Brain Development , 1997, Journal of neurochemistry.

[69]  D. Arnold,et al.  Proton magnetic resonance spectroscopic imaging for discrimination of absence and complex partial seizures , 1997, Annals of neurology.

[70]  P. Magistretti,et al.  Selective Distribution of Lactate Dehydrogenase Isoenzymes in Neurons and Astrocytes of Human Brain , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[71]  G. Akopian,et al.  Identified glial cells in the early postnatal mouse hippocampus display different types of Ca2+ currents , 1996, Glia.

[72]  S. Spencer,et al.  Depth electrode studies and intracellular dentate granule cell recordings in temporal lobe epilepsy , 1995, Annals of neurology.

[73]  A. Cornell-Bell,et al.  Human epileptic astrocytes exhibit increased gap junction coupling , 1995, Glia.

[74]  R. Schwarcz,et al.  Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  N. Barbaro,et al.  MDR1 Gene Expression in Brain of Patients with Medically Intractable Epilepsy , 1995, Epilepsia.

[76]  I. Fried,et al.  Direct Measurement of Extracellular Lactate in the Human Hippocampus During Spontaneous Seizures , 1994, Journal of neurochemistry.

[77]  S. Waxman,et al.  Expression of voltage-activated ion channels by astrocytes and oligodendrocytes in the hippocampal slice. , 1993, Journal of neurophysiology.

[78]  M. During,et al.  Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain , 1993, The Lancet.

[79]  D. D. Fraser,et al.  Voltage-activated K+ currents in acutely isolated hippocampal astrocytes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  M. Witter,et al.  Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region , 1989, Progress in Neurobiology.

[81]  H. Sasaki [Morphology of astrocytes--past, present, and future]. , 1987, No to shinkei = Brain and nerve.

[82]  O B Paulson,et al.  Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? , 1987, Science.

[83]  J. M. Ritchie,et al.  The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[84]  W. J. Brown,et al.  Distribution of Pyramidal Cell Density and Hyperexcitability in the Epileptic Human Hippocampal Formation , 1984, Epilepsia.

[85]  W. J. Brown,et al.  Temporal Lobe Volumetric Cell Densities in Temporal Lobe Epilepsy , 1984, Epilepsia.

[86]  A. Harris Cortical neuroglia in experimental epilepsy , 1975, Experimental Neurology.

[87]  D A Pollen,et al.  Neuroglia: Gliosis and Focal Epilepsy , 1970, Science.

[88]  W. Penfield,et al.  EPILEPTOGENIC LESIONS OF THE BRAIN: A HISTOLOGIC STUDY , 1940 .

[89]  W. Penfield,et al.  The structural basis of traumatic epilepsy and results of radical operation , 1930 .

[90]  Wilhelm Sommer,et al.  Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie , 1880, Archiv für Psychiatrie und Nervenkrankheiten.

[91]  A. Verkhratsky Neurotransmitter Receptors in Astrocytes , 2009 .

[92]  Timothy A. Pedley,et al.  Epilepsy : a comprehensive textbook , 2008 .

[93]  D. Spencer,et al.  Gene Expression in Temporal Lobe Epilepsy is Consistent with Increased Release of Glutamate by Astrocytes , 2007, Molecular medicine.

[94]  O. Petroff,et al.  6 – Metabolic Biopsy of the Brain , 2007 .

[95]  Bratz Ammonshornbefunde bei Epileptischen , 2005, European Archives of Psychiatry and Neurological Sciences.

[96]  L. Masukawa,et al.  Hippocampal neuronal density in temporal lobe epilepsy with and without gliomas , 2004, Acta Neuropathologica.

[97]  P. V. van Rijen,et al.  Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. , 2002, Brain : a journal of neurology.

[98]  J. Pachter,et al.  Expression of binding sites for beta chemokines on human astrocytes. , 1999, Glia.

[99]  H. Kimelberg,et al.  Swelling-activated release of excitatory amino acids in the brain: relevance for pathophysiology. , 1998, Contributions to nephrology.

[100]  A. Cornell-Bell,et al.  Na(+)-current expression in rat hippocampal astrocytes in vitro: alterations during development. , 1991, Journal of neurophysiology.

[101]  D. Corey,et al.  Ion channels in vertebrate glia. , 1990, Annual review of neuroscience.

[102]  D P Corey,et al.  Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes , 1988, Glia.

[103]  A. J. Castiglioni,et al.  ASTROCYTES IN EPILEPSY , 1986 .

[104]  Sergey Fedoroff,et al.  Cell biology and pathology of astrocytes , 1986 .

[105]  P. D. Lewis Dynamic properties of glia cells: Edited by E. Schoffeniels, G. Franck, D. B. Towers, and L. Hertz. Pp. 467. Pergamon Press, Oxford. 1978. Hard cover £25.00 , 1979 .

[106]  E. Bratz Ammonshornbefunde bei epileptikern , 1899 .