Computational thermomechanics of crystalline rock, Part I: A combined multi-phase-field/crystal plasticity approach for single crystal simulations

Abstract Rock salt is one of the major materials used for nuclear waste geological disposal. The desired characteristics of rock salt, i.e., high thermal conductivity, low permeability, and self-healing are highly related to its crystalline microstructure. Conventionally, this microstructural effect is often incorporated phenomenologically in macroscopic damage models. Nevertheless, the thermo-mechanical behavior of a crystalline material is dictated by the nature of crystal lattice and micromechanics (i.e., the slip-system). This paper presents a model proposed to examine these fundamental mechanisms at the grain scale level. We employ a crystal plasticity framework in which single-crystal halite is modeled as a face-centered cubic (FCC) structure with the secondary atoms in its octahedral holes, where a pair of Na + and Cl − ions forms the bond basis. Utilizing the crystal plasticity framework, we capture the existence of an elastic region in the stress space and the sequence of slip system activation of single-crystal halite under different temperature ranges. To capture the anisotropic nature of the intragranular fracture, we couple a crystal plasticity model with a multi-phase-field formulation that does not require high-order terms for the phase field. Numerical examples demonstrate that the proposed model is able to capture the anisotropy of inelastic and damage behavior under various loading rates and temperature conditions.

[1]  Usik Lee,et al.  Anisotropic damage mechanics based on strain energy equivalence and equivalent elliptical microcracks , 1997 .

[2]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[3]  Michael A. Heroux,et al.  A new overview of the Trilinos project , 2012, Sci. Program..

[4]  Bernard Budiansky,et al.  THEORETICAL PREDICTION OF PLASTIC STRAINS OF POLYCRYSTALS , 1961 .

[5]  Christian Miehe,et al.  A comparative study of stress update algorithms for rate‐independent and rate‐dependent crystal plasticity , 2001 .

[6]  Michael Ortiz,et al.  Computational modelling of single crystals , 1993 .

[7]  Qiushi Chen,et al.  ALBANY: USING COMPONENT-BASED DESIGN TO DEVELOP A FLEXIBLE, GENERIC MULTIPHYSICS ANALYSIS CODE , 2016 .

[8]  Michaël Peigney,et al.  An incremental variational approach to coupled thermo-mechanical problems in anelastic solids. Application to shape-memory alloys , 2013 .

[9]  WaiChing Sun,et al.  A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media , 2017 .

[10]  J. C. Simo,et al.  On continuum damage-elastoplasticity at finite strains , 1989 .

[11]  Daniel Kienle,et al.  Phase field modeling of fracture in anisotropic brittle solids , 2017 .

[12]  Laurent Stainier,et al.  Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity , 2010 .

[13]  J. Poirier,et al.  Dynamic recrystallization during creep of single‐crystalline halite: An experimental study , 1979 .

[14]  Julien Réthoré,et al.  Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials , 2017 .

[15]  Mgd Marc Geers,et al.  On coupled gradient-dependent plasticity and damage theories with a view to localization analysis , 1999 .

[16]  Julien Réthoré,et al.  Phase field modelling of anisotropic crack propagation , 2017 .

[17]  D. E. Munson,et al.  Constitutive model of creep in rock salt applied to underground room closure , 1997 .

[18]  William D. Callister,et al.  Fundamentals of Materials Science and Engineering: An Integrated Approach, 2nd Edition , 2004 .

[19]  WaiChing Sun,et al.  Wave propagation and strain localization in a fully saturated softening porous medium under the non‐isothermal conditions , 2016 .

[20]  Carmelo Calì Deformation , 2020, Lecture Notes in Morphogenesis.

[21]  K. S. Havner,et al.  Finite Plastic Deformation of Crystalline Solids , 1992 .

[22]  Lallit Anand,et al.  Thermal effects in the superelasticity of crystalline shape-memory materials , 2003 .

[23]  Christian Miehe,et al.  Phase Field Modeling of Fracture in Multi-Physics Problems. Part II. Coupled Brittle-to-Ductile Failure Criteria and Crack Propagation in Thermo-Elastic-Plastic Solids , 2015 .

[24]  WaiChing Sun,et al.  A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain , 2016 .

[25]  Roger P. Pawlowski,et al.  Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, Part I: Template-based generic programming , 2012, Sci. Program..

[26]  Michael J. Borden,et al.  Isogeometric analysis of phase-field models for dynamic brittle and ductile fracture , 2012 .

[27]  Kun Wang,et al.  Data-Driven Discrete-Continuum Method for Partially Saturated Micro-Polar Porous Media , 2017 .

[28]  M. Aubertin,et al.  A rate-dependent model for the ductile behavior of salt rocks , 1999 .

[29]  Thomas J. R. Hughes,et al.  A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects , 2016 .

[30]  Ronaldo I. Borja,et al.  Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients , 2008 .

[31]  J. Ju,et al.  On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects , 1989 .

[32]  Ronaldo I. Borja,et al.  Hydromechanical Modeling of Unsaturated Flow in Double Porosity Media , 2016 .

[33]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[34]  János Urai,et al.  Flow and transport properties of salt rocks , 2005 .

[35]  S. R. Bodner,et al.  Constitutive representation of damage healing in WlPP salt , 1995 .

[36]  Fadi Aldakheel,et al.  Micromorphic approach for gradient-extended thermo-elastic–plastic solids in the logarithmic strain space , 2017 .

[37]  Akinori Yamanaka,et al.  Multi-phase-field simulations for dynamic recrystallization , 2009 .

[38]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—II. Computational aspects , 1987 .

[39]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[40]  M. Matthewson,et al.  Mechanical properties of ceramics , 1996 .

[41]  M. Paterson Experimental Rock Deformation: The Brittle Field , 1978 .

[42]  F. Hansen,et al.  Mechanical Response and Microprocesses of Reconsolidating Crushed Salt at Elevated Temperature , 2015, Rock Mechanics and Rock Engineering.

[43]  Migration of brine cavities in rock salt , 1969 .

[44]  F. Hansen,et al.  Creep of rocksalt , 1983 .

[45]  D. McAdams Deal , 2020, The Strange Case of Donald J. Trump.

[46]  H. W. Hayden,et al.  The Structure and Properties of Materials , 1964 .

[47]  L. Anand,et al.  Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals , 2004 .

[48]  Ruben Juanes,et al.  Stability, Accuracy, and Efficiency of Sequential Methods for Coupled Flow and Geomechanics , 2011 .

[49]  M. A. Durand The Temperature Variation of the Elastic Moduli of NaCl, KCl and MgO , 1936 .

[50]  Fernando Fraternali,et al.  Eigenfracture: An Eigendeformation Approach to Variational Fracture , 2009, Multiscale Model. Simul..

[51]  Alan Needleman,et al.  An analysis of nonuniform and localized deformation in ductile single crystals , 1982 .

[52]  John D. Clayton,et al.  Deformation, fracture, and fragmentation in brittle geologic solids , 2010 .

[53]  J. Urai,et al.  Solution-precipitation creep and fluid flow in halite: a case study of Zechstein (Z1) rocksalt from Neuhof salt mine (Germany) , 2008 .

[54]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[55]  K. Runesson,et al.  A model framework for anisotropic damage coupled to crystal (visco) plasticity , 2004 .

[56]  Bin Li,et al.  Phase‐field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy , 2015 .

[57]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[58]  A. Molinari,et al.  Texture development in halite: Comparison of Taylor model and self-consistent theory , 1989 .

[59]  R. Borja Plasticity: Modeling & Computation , 2013 .

[60]  John D. Clayton,et al.  Phase Field Modeling of Directional Fracture in Anisotropic Polycrystals , 2015 .

[61]  Nicolas Cordero,et al.  Micromorphic approach to single crystal plasticity and damage , 2011 .

[62]  Christina Kluge Fundamentals Of Materials Science And Engineering An Integrated Approach , 2016 .

[63]  C. Spiers,et al.  Weakening of rock salt by water during long-term creep , 1986, Nature.

[64]  J. Carrera,et al.  Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media , 1996 .

[65]  Poromechanics , 2020 .

[66]  WaiChing Sun,et al.  Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow , 2018 .

[67]  L. Anand,et al.  A computational procedure for rate-independent crystal plasticity , 1996 .

[68]  S. Bauer,et al.  Experimental determination of single-crystal halite thermal conductivity, diffusivity and specific heat from -75°C to 300°C , 2015 .

[69]  E. J. Nowak,et al.  Interim results of brine transport studies in the Waste Isolation Pilot Plant (WIPP) , 1987 .

[70]  Ronaldo I. Borja,et al.  Cam-Clay plasticity, Part VIII: A constitutive framework for porous materials with evolving internal structure , 2016 .

[71]  Cheng Zhu,et al.  A Model of Damage and Healing Coupling Halite Thermo-mechanical Behavior to Microstructure Evolution , 2015, Geotechnical and Geological Engineering.

[72]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[73]  WaiChing Sun,et al.  Lie-group interpolation and variational recovery for internal variables , 2013, Computational Mechanics.

[74]  Antonio Gens,et al.  Vapour Transport in Low Permeability Unsaturated Soils with Capillary Effects , 2000 .

[75]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[76]  WaiChing Sun,et al.  A stabilized finite element formulation for monolithic thermo‐hydro‐mechanical simulations at finite strain , 2015 .

[77]  Francis D. Hansen,et al.  Salt disposal of heat-generating nuclear waste. , 2011 .

[78]  S. Bodner,et al.  Recovery and Healing of Damage in WIPP Salt , 1998 .

[79]  WaiChing Sun,et al.  Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range , 2017 .

[80]  WaiChing Sun,et al.  Anisotropy of a Tensorial Bishop’s Coefficient for Wetted Granular Materials , 2017 .

[81]  Howard L. Schreyer,et al.  Constitutive Models for Healing of Materials with Application to Compaction of Crushed Rock Salt , 1995 .

[82]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[83]  Ronaldo I. Borja,et al.  Block-preconditioned Newton–Krylov solvers for fully coupled flow and geomechanics , 2011 .

[84]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[85]  Benjamin Reedlunn Reinvestigation into Closure Predictions of Room D at the Waste Isolation Pilot Plant , 2016 .

[86]  P. Dawson,et al.  Constitutive model for the low temperature creep of salt (with application to WIPP) , 1979 .

[87]  L. Lorenzis,et al.  Phase-field modeling of ductile fracture , 2015, Computational Mechanics.

[88]  WaiChing Sun,et al.  Determining Material Parameters for Critical State Plasticity Models Based on Multilevel Extended Digital Database , 2016 .

[89]  Mary F. Wheeler,et al.  A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach , 2015 .

[90]  Cheng Zhu,et al.  Chemo-Mechanical Damage and Healing of Granular Salt: Micro-macro modeling , 2016 .

[91]  Weidong Qi,et al.  Anisotropic continuum damage modeling for single crystals at high temperatures , 1999 .

[92]  WaiChing Sun,et al.  A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain , 2013 .

[93]  R. Borja,et al.  On the pore‐scale mechanisms leading to brittle and ductile deformation behavior of crystalline rocks , 2015 .

[94]  Ronaldo I. Borja,et al.  Stabilized mixed finite elements for deformable porous media with double porosity , 2015 .

[95]  J. Knap,et al.  Army Research Laboratory Aberdeen Proving Ground , MD 21005-5069 ARL-RP-340 September 2011 Phase Field Modeling of Twinning in Indentation of Transparent Crystals , 2011 .

[96]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[97]  Joshua A. White,et al.  Block-partitioned solvers for coupled poromechanics: A unified framework , 2016 .

[98]  Antonio Gens,et al.  A constitutive model for crushed salt , 2002 .

[99]  R. Borja,et al.  Computational Aspects of Elasto-Plastic Deformation in Polycrystalline Solids , 2012 .

[100]  WaiChing Sun,et al.  A SEMI-IMPLICIT MICROPLAR DISCRETE-TO-CONTINUUM METHOD FOR GRANULAR MATERIALS , 2016 .

[101]  J. E. Russell,et al.  Mechanical behaviour of rock salt: Phenomenology and micromechanisms , 1992 .

[102]  B. D. Reddy,et al.  Phase‐field modelling of fracture in single crystal plasticity , 2016 .

[103]  P. E. Senseny,et al.  Stress magnitudes in natural rock salt , 1982 .

[104]  T. Berlepsch,et al.  Salt as a host rock for the geological repository for nuclear waste , 2016 .

[105]  A. Gens,et al.  Porosity variations in saline media caused by temperature gradients coupled to multiphase flow and dissolution/precipitation , 1996 .

[106]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[107]  WaiChing Sun,et al.  Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of Mancos Shale in Brazilian tests , 2017 .

[108]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[109]  N. O'Dowd,et al.  Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains , 2001 .

[110]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[111]  V. Lubarda On thermodynamic potentials in linear thermoelasticity , 2004 .

[112]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[113]  Michael Ortiz,et al.  A multi-phase field model of planar dislocation networks , 2004 .

[114]  Roger P. Pawlowski,et al.  Automating embedded analysis capabilities and managing software complexity in multiphysics simulation, Part II: Application to partial differential equations , 2012, Sci. Program..

[115]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[116]  C. B. Carter,et al.  Ceramic Materials: Science and Engineering , 2013 .

[117]  R. Borja,et al.  Discrete micromechanics of elastoplastic crystals , 1993 .

[118]  Cv Clemens Verhoosel,et al.  Gradient damage vs phase-field approaches for fracture: Similarities and differences , 2016 .

[119]  D. Schuele,et al.  Pressure derivatives of the elastic constants of NaCl and KCl at 295°K and 195°K , 1965 .

[120]  T. T. Nguyen,et al.  On the choice of parameters in the phase field method for simulating crack initiation with experimental validation , 2016, International Journal of Fracture.

[121]  I. Steinbach Phase-field models in materials science , 2009 .

[122]  J. Lemaître How to use damage mechanics , 1984 .

[123]  Ruben Juanes,et al.  Stability, Accuracy and Efficiency of Sequential Methods for Coupled Flow and Geomechanics , 2009 .

[124]  Kurt Inderbitzin The Deal , 2005 .

[125]  John D. Clayton,et al.  Nonlinear Mechanics of Crystals , 2010 .

[126]  M. Ortiz,et al.  A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids , 2006 .

[127]  D. Tromans,et al.  Fracture toughness and surface energies of minerals: theoretical estimates for oxides, sulphides, silicates and halides , 2002 .

[128]  J. Mosler,et al.  On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization , 2011 .

[129]  S. Ko,et al.  Patterning by controlled cracking , 2012, Nature.

[130]  H. C. Heard,et al.  Temperature and rate dependent deformation of halite , 1970 .

[131]  H. Clark,et al.  The thermal conductivity of rocks and its dependence upon temperature and composition; Part II , 1940 .

[132]  J. Mosler,et al.  On the thermomechanical coupling in dissipative materials: A variational approach for generalized standard materials , 2015 .

[133]  A. Gens,et al.  Nonisothermal multiphase flow of brine and gas through saline media , 1994 .

[134]  J. K. Knowles,et al.  A One-Dimensional Continuum Model for Shape-Memory Alloys , 1994 .

[135]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[136]  WaiChing Sun,et al.  A unified method to predict diffuse and localized instabilities in sands , 2013 .

[137]  M. Rashid,et al.  A constitutive algorithm for rate-dependent crystal plasticity , 1992 .

[138]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[139]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[140]  W. Polkowski Crystal Plasticity , 2021, Crystals.

[141]  J. E. Russell,et al.  Rheology of rocksalt , 1993 .

[142]  T. Takaki,et al.  Development of multi-phase-field crack model for crack propagation in polycrystal , 2014 .

[143]  WaiChing Sun,et al.  IDENTIFYING MATERIAL PARAMETERS FOR A MICRO-POLAR PLASTICITY MODEL VIA X-RAY MICRO-COMPUTED TOMOGRAPHIC (CT) IMAGES: LESSONS LEARNED FROM THE CURVE-FITTING EXERCISES , 2016 .

[144]  J. D. Bredehoeft,et al.  Geologic disposal of high-level radioactive wastes; earth-science perspectives , 1978 .