Construction of maximin distance Latin squares and related Latin hypercube designs

&NA; Maximin distance Latin hypercube designs are widely used in computer experiments, yet their construction is challenging. Based on number theory and finite fields, we propose three algebraic methods to construct maximin distance Latin squares as special Latin hypercube designs. We develop lower bounds on their minimum distances. The resulting Latin squares and related Latin hypercube designs have larger minimum distances than existing ones, and are especially appealing for high‐dimensional applications.

[1]  V. R. Joseph,et al.  ORTHOGONAL-MAXIMIN LATIN HYPERCUBE DESIGNS , 2008 .

[2]  Francesco Iorio,et al.  The enumeration of Costas arrays of order 28 , 2010, ITW.

[3]  J.P. Costas,et al.  A study of a class of detection waveforms having nearly ideal range—Doppler ambiguity properties , 1983, Proceedings of the IEEE.

[4]  E. N. Gilbert,et al.  Latin Squares which Contain No Repeated Digrams , 1965 .

[5]  Solomon W. Golomb,et al.  Algebraic Constructions for Costas Arrays , 1984, J. Comb. Theory, Ser. A.

[6]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[7]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[8]  Neil A. Butler,et al.  Supersaturated Latin Hypercube Designs , 2005 .

[9]  Runze Li,et al.  Design and Modeling for Computer Experiments , 2005 .

[10]  J.K. Beard Generating Costas Arrays to Order 200 , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[11]  D. Morris Max,et al.  Design of Computer Experiments: Introduction and Background , 2015 .

[12]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[13]  K. Drakakis,et al.  A review of Costas arrays , 2006 .

[14]  Yong-Dao Zhou,et al.  Space-filling properties of good lattice point sets , 2015 .

[15]  Neil A. Butler,et al.  Optimal and orthogonal Latin hypercube designs for computer experiments , 2001 .

[16]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[17]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[18]  Jack P. C. Kleijnen,et al.  Sensitivity analysis and related analyses: A review of some statistical techniques , 1997 .

[19]  Jerome Sacks,et al.  Choosing the Sample Size of a Computer Experiment: A Practical Guide , 2009, Technometrics.

[20]  William A. Brenneman,et al.  Optimal Sliced Latin Hypercube Designs , 2015, Technometrics.

[21]  Boxin Tang,et al.  Latin Hypercubes and Space-Filling Designs , 2015, 2203.06334.