A Weak Spectral Condition for the Controllability of the Bilinear Schrödinger Equation with Application to the Control of a Rotating Planar Molecule
暂无分享,去创建一个
Mario Sigalotti | Marco Caponigro | Thomas Chambrion | Ugo V. Boscain | U. Boscain | M. Caponigro | M. Sigalotti | T. Chambrion
[1] Karine Beauchard,et al. Semi-global weak stabilization of bilinear Schrödinger equations , 2010 .
[2] Kazufumi Ito,et al. Optimal Bilinear Control of an Abstract Schrödinger Equation , 2007, SIAM J. Control. Optim..
[3] Mazyar Mirrahimi,et al. Practical Stabilization of a Quantum Particle in a One-Dimensional Infinite Square Potential Well , 2009, SIAM J. Control. Optim..
[4] Tosio Kato. Perturbation theory for linear operators , 1966 .
[5] P. H. Müller,et al. T. Kato, Perturbation theory for linear operators. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 132) XX + 592 S. m. 3 Fig. Berlin/Heidelberg/New York Springer-Verlag. Preis geb. DM 79,20 , 1967 .
[6] T. Seideman,et al. Nonadiabatic Alignment by Intense Pulses. Concepts, Theory, and Directions , 2005 .
[7] Mario Sigalotti,et al. Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.
[8] M. Slemrod,et al. Controllability of distributed bilinear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[9] Andrei A. Agrachev,et al. An estimation of the controllability time for single-input systems on compact Lie Groups , 2006 .
[10] Law,et al. Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.
[11] Mario Sigalotti,et al. Erratum of “The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent” , 2010 .
[12] Karine Beauchard,et al. Local controllability of 1D linear and nonlinear Schr , 2010, 1001.3288.
[13] Karine Beauchard,et al. Controllability of a quantum particle in a moving potential well , 2006 .
[14] Hayk Nersisyan,et al. Global exact controllability in infinite time of Schrödinger equation: multidimensional case , 2012, 1201.3445.
[15] Michael Spanner,et al. Coherent control of rotational wave-packet dynamics via fractional revivals. , 2004, Physical review letters.
[16] Gabriel Turinici,et al. On the controllability of bilinear quantum systems , 2000 .
[17] Vahagn Nersesyan,et al. Global approximate controllability for Schr\"odinger equation in higher Sobolev norms and applications , 2009, 0905.2438.
[18] Yu. L. Sachkov,et al. Controllability of invariant systems on lie groups and homogeneous spaces , 2000 .
[19] D. D’Alessandro. Introduction to Quantum Control and Dynamics , 2007 .
[20] Bronis law Jakubczyk. Introduction to Geometric Nonlinear Control ; Controllability and Lie Bracket , 2007 .
[21] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[22] Mazyar Mirrahimi,et al. Lyapunov control of a quantum particle in a decaying potential , 2008, 0805.0910.
[23] Karine Beauchard,et al. Local controllability of a 1-D Schrödinger equation , 2005 .
[24] M. Zelikin,et al. Control theory and optimization I , 1999 .
[25] Thomas Chambrion,et al. Locomotion and Control of a Self-Propelled Shape-Changing Body in a Fluid , 2009, J. Nonlinear Sci..
[26] V. Nersesyan. Growth of Sobolev Norms and Controllability of the Schrödinger Equation , 2008, 0804.3982.
[27] Roger W. Brockett,et al. Finite Controllability of Infinite-Dimensional Quantum Systems , 2010, IEEE Transactions on Automatic Control.
[28] Mario Sigalotti,et al. Simultaneous approximate tracking of density matrices for a system of Schrödinger equations , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.
[29] Mario Sigalotti,et al. Generic controllability properties for the bilinear Schrödinger equation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.
[30] Henrik Stapelfeldt,et al. Colloquium: Aligning molecules with strong laser pulses , 2003 .
[31] Sylvain Ervedoza,et al. Approximate Controllability for a System of Schrödinger Equations Modeling a Single Trapped Ion , 2009 .
[32] Mario Sigalotti,et al. The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent , 2008 .