Electron transfer in syntrophic communities of anaerobic bacteria and archaea

[1]  Marnix H Medema,et al.  Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. , 2008, Environmental microbiology.

[2]  W. Whitman,et al.  Formate-Dependent H2 Production by the Mesophilic Methanogen Methanococcus maripaludis , 2008, Applied and Environmental Microbiology.

[3]  A. Boetius,et al.  Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. , 2008, Environmental microbiology.

[4]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[5]  F. Widdel,et al.  Structure of an F430 variant from archaea associated with anaerobic oxidation of methane. , 2008, Journal of the American Chemical Society.

[6]  M. Futai,et al.  Stochastic rotational catalysis of proton pumping F-ATPase , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  Michele Galatola,et al.  The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective. , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[8]  U. Stingl,et al.  Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms. , 2008, Environmental microbiology.

[9]  E. Delong,et al.  The Microbial Engines That Drive Earth's Biogeochemical Cycles , 2008, Science.

[10]  Victoria J. Orphan,et al.  Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics , 2008, Proceedings of the National Academy of Sciences.

[11]  A. Boetius,et al.  On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. , 2008, Environmental microbiology.

[12]  Seigo Shima,et al.  Methane as Fuel for Anaerobic Microorganisms , 2008, Annals of the New York Academy of Sciences.

[13]  Lars Rohlin,et al.  Physiology, Ecology, Phylogeny, and Genomics of Microorganisms Capable of Syntrophic Metabolism , 2008, Annals of the New York Academy of Sciences.

[14]  J. Andreesen,et al.  Tungsten, the Surprisingly Positively Acting Heavy Metal Element for Prokaryotes , 2008, Annals of the New York Academy of Sciences.

[15]  T. Abe,et al.  The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. , 2008, Genome research.

[16]  E. Jayamani,et al.  Energy Conservation via Electron-Transferring Flavoprotein in Anaerobic Bacteria , 2007, Journal of bacteriology.

[17]  Fuli Li,et al.  Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri , 2007, Journal of bacteriology.

[18]  P. Vignais,et al.  Occurrence, classification, and biological function of hydrogenases: an overview. , 2007, Chemical reviews.

[19]  V. Orphan,et al.  Methyl sulfides as intermediates in the anaerobic oxidation of methane. , 2007, Environmental microbiology.

[20]  Davide Pisani,et al.  Supertrees disentangle the chimerical origin of eukaryotic genomes. , 2007, Molecular biology and evolution.

[21]  A. Stams,et al.  Archaeoglobus fulgidus couples CO oxidation to sulfate reduction and acetogenesis with transient formate accumulation. , 2007, Environmental microbiology.

[22]  M. Rother,et al.  Genetic and proteomic analyses of CO utilization by Methanosarcina acetivorans , 2007, Archives of Microbiology.

[23]  Anamitra Bhattacharyya,et al.  The genome of Syntrophus aciditrophicus: Life at the thermodynamic limit of microbial growth , 2007, Proceedings of the National Academy of Sciences.

[24]  Bo Barker Jørgensen,et al.  Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments. , 2007, Environmental microbiology.

[25]  Rudolf Amann,et al.  Diversity and Abundance of Aerobic and Anaerobic Methane Oxidizers at the Haakon Mosby Mud Volcano, Barents Sea , 2007, Applied and Environmental Microbiology.

[26]  D. Stahl,et al.  Metabolic modeling of a mutualistic microbial community , 2007, Molecular systems biology.

[27]  T. Treude,et al.  Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea , 2007, Applied and Environmental Microbiology.

[28]  Weiwen Zhang,et al.  Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: Involvement of an ancient horizontal gene transfer. , 2007, Biochemical and biophysical research communications.

[29]  A. Spormann,et al.  Hydrogen Metabolism in Shewanella oneidensis MR-1 , 2006, Applied and Environmental Microbiology.

[30]  R. Amann,et al.  Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink , 2006, Nature.

[31]  Alice Dohnalkova,et al.  Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Mike S. M. Jetten,et al.  A microbial consortium couples anaerobic methane oxidation to denitrification , 2006, Nature.

[33]  R. Hedderich,et al.  Energy-Converting [NiFe] Hydrogenases: More than Just H2 Activation , 2006, Journal of Molecular Microbiology and Biotechnology.

[34]  J. Dolfing,et al.  Exocellular electron transfer in anaerobic microbial communities. , 2006, Environmental microbiology.

[35]  T. Uchiyama,et al.  Reconstruction and Regulation of the Central Catabolic Pathway in the Thermophilic Propionate-Oxidizing Syntroph Pelotomaculum thermopropionicum , 2006, Journal of bacteriology.

[36]  Kazuya Watanabe,et al.  Coaggregation Facilitates Interspecies Hydrogen Transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus , 2005, Applied and Environmental Microbiology.

[37]  Ken Takai,et al.  Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? , 2005, Trends in microbiology.

[38]  T. Mehta,et al.  Extracellular electron transfer via microbial nanowires , 2005, Nature.

[39]  Guy Perrière,et al.  Horizontal Transfer of Two Operons Coding for Hydrogenases Between Bacteria and Archaea , 2005, Journal of Molecular Evolution.

[40]  J. Hackstein,et al.  The energy metabolism of Methanomicrococcus blatticola: physiological and biochemical aspects , 2005, Antonie van Leeuwenhoek.

[41]  A. Guss,et al.  Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin‐dependent C‐1 oxidation/reduction pathway and differences in H2 metabolism between closely related species , 2005, Molecular microbiology.

[42]  R. Sawers,et al.  Formate and its role in hydrogen production in Escherichia coli. , 2005, Biochemical Society transactions.

[43]  Daniel Rokhsar,et al.  Reverse Methanogenesis: Testing the Hypothesis with Environmental Genomics , 2004, Science.

[44]  P. Lens,et al.  Anaerobic sludge granulation. , 2004, Water research.

[45]  Rudolf Amann,et al.  A conspicuous nickel protein in microbial mats that oxidize methane anaerobically , 2003, Nature.

[46]  K. Bagramyan,et al.  Structural and Functional Features of Formate Hydrogen Lyase, an Enzyme of Mixed-Acid Fermentation from Escherichia coli , 2003, Biochemistry (Moscow).

[47]  D. Searcy Metabolic integration during the evolutionary origin of mitochondria , 2003, Cell Research.

[48]  Emile Schiltz,et al.  Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. , 2003, European journal of biochemistry.

[49]  Joo-Hwa Tay,et al.  Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. , 2003, Water research.

[50]  M. Reis,et al.  Hydrogen metabolism in Desulfovibrio desulfuricans strain New Jersey (NCIMB 8313)--comparative study with D. vulgaris and D. gigas species. , 2002, Anaerobe.

[51]  Y. Kamagata,et al.  Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. , 2002, International journal of systematic and evolutionary microbiology.

[52]  Rudolf Amann,et al.  Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane , 2002, Science.

[53]  A. Stams,et al.  Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans , 2002, Antonie van Leeuwenhoek.

[54]  E. Delong,et al.  Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  A. Stams,et al.  Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. , 2002, International journal of systematic and evolutionary microbiology.

[56]  M. McInerney,et al.  Anaerobic microbial metabolism can proceed close to thermodynamic limits , 2002, Nature.

[57]  Achim Kröger,et al.  Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. , 2002, Biochimica et biophysica acta.

[58]  F. Reniero,et al.  The Global Methane Cycle: Isotopes and Mixing Ratios, Sources and Sinks , 2001, Isotopes in environmental and health studies.

[59]  P L McCarty,et al.  The development of anaerobic treatment and its future. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[60]  K. Finster,et al.  Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles , 2001, Microbial Ecology.

[61]  L. Casalot,et al.  Maturation of the [NiFe] hydrogenases. , 2001, Trends in microbiology.

[62]  J. M. Hayes,et al.  Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments , 2001, Applied and Environmental Microbiology.

[63]  D. Valentine,et al.  Hydrogen production by methanogens under low-hydrogen conditions , 2000, Archives of Microbiology.

[64]  Olaf Pfannkuche,et al.  A marine microbial consortium apparently mediating anaerobic oxidation of methane , 2000, Nature.

[65]  G. Unden,et al.  Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential. , 1998, European journal of biochemistry.

[66]  H. Harmsen,et al.  Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. , 1998, International journal of systematic bacteriology.

[67]  A New Spin on Hydrothermal Plumes , 1998, Science.

[68]  A. Stams,et al.  Investigation of the fumarate metabolism of the syntrophic propionate-oxidizing bacterium strain MPOB , 1998, Archives of Microbiology.

[69]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[70]  M. Bott Anaerobic citrate metabolism and its regulation in enterobacteria , 1997, Archives of Microbiology.

[71]  B. Ahring,et al.  Interspecies Electron Transfer during Propionate and Butyrate Degradation in Mesophilic, Granular Sludge , 1995, Applied and environmental microbiology.

[72]  A. Stams,et al.  Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. , 1995, Anaerobe.

[73]  M. Friedrich,et al.  Energetics of syntrophic fatty acid oxidation , 1994 .

[74]  Alfons J. M. Stams,et al.  Anaerobic Degradation of Propionate by a Mesophilic Acetogenic Bacterium in Coculture and Triculture with Different Methanogens , 1994, Applied and environmental microbiology.

[75]  B. Schink,et al.  Evidence of reversed electron transport in syntrophic butyrate or benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii , 1994, Archives of Microbiology.

[76]  B. Ahring,et al.  Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor , 1993, Applied and environmental microbiology.

[77]  A. Stams,et al.  Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens , 1993 .

[78]  A. Stams,et al.  Growth of Syntrophic Propionate-Oxidizing Bacteria with Fumarate in the Absence of Methanogenic Bacteria , 1993, Applied and environmental microbiology.

[79]  Alfons J. M. Stams,et al.  Enrichment of Thermophilic Propionate-Oxidizing Bacteria in Syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum , 1992, Applied and environmental microbiology.

[80]  A. Stams,et al.  Bacteriological composition and structure of granular sludge adapted to different substrates , 1991, Applied and environmental microbiology.

[81]  F. Boogerd,et al.  Floating Filters, a Novel Technique for Isolation and Enumeration of Fastidious, Acidophilic, Iron-Oxidizing, Autotrophic Bacteria , 1990, Applied and environmental microbiology.

[82]  D. Boone,et al.  Diffusion of the Interspecies Electron Carriers H2 and Formate in Methanogenic Ecosystems and Its Implications in the Measurement of Km for H2 or Formate Uptake , 1989, Applied and environmental microbiology.

[83]  B. Palsson,et al.  Control of interspecies electron transfer flow during anaerobic digestion: Dynamic diffusion reaction models for hydrogen gas transfer in microbial flocs , 1989, Biotechnology and bioengineering.

[84]  Gatze Lettinga,et al.  Granular Anaerobic Sludge, Microbiology and Technology , 1988 .

[85]  J. Gregory Zeikus,et al.  Control of Interspecies Electron Flow during Anaerobic Digestion: Significance of Formate Transfer versus Hydrogen Transfer during Syntrophic Methanogenesis in Flocs , 1988, Applied and environmental microbiology.

[86]  T. Phelps,et al.  Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions , 1986 .

[87]  J. Keltjens,et al.  Electron transfer reactions in methanogens , 1986 .

[88]  M. McInerney,et al.  Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei , 1986, Journal of bacteriology.

[89]  B. Ollivier,et al.  Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes , 1986, Archives of Microbiology.

[90]  T. J. Phelps,et al.  Sulfate-Dependent Interspecies H2 Transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during Coculture Metabolism of Acetate or Methanol , 1985, Applied and environmental microbiology.

[91]  T. J. Phelps,et al.  Gas Metabolism Evidence in Support of the Juxtaposition of Hydrogen-Producing and Methanogenic Bacteria in Sewage Sludge and Lake Sediments , 1985, Applied and environmental microbiology.

[92]  A. Klapwijk,et al.  Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment , 1980 .

[93]  M. Wolin,et al.  Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium , 1977, Applied and environmental microbiology.

[94]  M. Wolin,et al.  Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium , 1977, Applied and environmental microbiology.

[95]  D. Mossel,et al.  Sublethal cold shock in Vibrio parahaemolyticus , 1977, Applied and environmental microbiology.

[96]  M. P. Bryant,et al.  Growth of Desulfovibrio in Lactate or Ethanol Media Low in Sulfate in Association with H2-Utilizing Methanogenic Bacteria , 1977, Applied and environmental microbiology.

[97]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[98]  M. P. Bryant,et al.  Glucose Fermentation Products of Ruminococcus albus Grown in Continuous Culture with Vibrio succinogenes: Changes Caused by Interspecies Transfer of H2 , 1973, Journal of bacteriology.

[99]  W. Brill,et al.  Acetaldehyde Oxidation by Methanobacillus–a New Ferredoxin-Dependent Reaction , 1966, Nature.

[100]  H. A. Barker Studies upon the methane fermentation. IV. The isolation and culture ofMethanobacterium Omelianskii , 1939, Antonie van Leeuwenhoek.

[101]  R. W. Hanks,et al.  PHYSIOLOGICAL and BIOCHEMICAL ASPECTS , 2009 .

[102]  D. Moreira,et al.  Tracking microbial biodiversity through molecular and genomic ecology. , 2008, Research in microbiology.

[103]  K. Nauhaus,et al.  In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. , 2007, Environmental microbiology.

[104]  K. Nauhaus,et al.  Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. , 2005, Environmental microbiology.

[105]  M. Friedrich Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. , 2005, Methods in enzymology.

[106]  A. Stams,et al.  Localization of the enzymes involved in H2 and formate metabolism inSyntrophospora bryantii , 2004, Antonie van Leeuwenhoek.

[107]  R. Wolfe,et al.  Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens , 2004, Archives of Microbiology.

[108]  R. S. Wolfe,et al.  Methanobacillus omelianskii, a symbiotic association of two species of bacteria , 2004, Archiv für Mikrobiologie.

[109]  A. Stams Metabolic interactions between anaerobic bacteria in methanogenic environments , 2004, Antonie van Leeuwenhoek.

[110]  M. P. Bryant,et al.  Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems , 2004, Archives of Microbiology.

[111]  D. Kelly,et al.  The prokaryotes: an evolving electronic resource for the microbiological community - , 2002 .

[112]  Rajakrishnan Rajkumar,et al.  Grammar Engineering for CCG using Ant and XSLT ∗ , 2001 .

[113]  C. Woese,et al.  Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms , 1999, Archives of Microbiology.

[114]  W. Reeburgh,et al.  METHANE CONSUMPTION IN CARIACO TRENCH WATERS AND SEDIMENTS , 1976 .