Singularity, Wielandt's lemma and singular values

In this study, some upper and lower bounds for singular values of a general complex matrix are investigated, according to singularity and Wielandt's lemma of matrices. Especially, some relationships between the singular values of the matrix A and its block norm matrix are established. Based on these relationships, one may obtain the effective estimates for the singular values of large matrices by using the lower dimension norm matrices. In addition, a small error in Piazza (2002) [G. Piazza, T. Politi, An upper bound for the condition number of a matrix in spectral norm, J. Comput. Appl. Math. 143 (1) (2002) 141-144] is also corrected. Some numerical experiments on saddle point problems show that these results are simple and sharp under suitable conditions.

[1]  Charles R. Johnson,et al.  Further lower bounds for the smallest singular value , 1998 .

[2]  Gu Dun-he,et al.  A NOTE ON A LOWER BOUND FOR THE SMALLEST SINGULAR VALUE , 1997 .

[3]  Ting-Zhu Huang,et al.  Optimal Gerschgorin‐type inclusion intervals of singular values , 2007, Numer. Linear Algebra Appl..

[4]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[7]  L. Kolotilina Nonsingularity/singularity criteria for nonstrictly block diagonally dominant matrices , 2003 .

[8]  Chuan-Long Wang,et al.  The block lower bounds for the smallest singular value , 2005, Int. J. Comput. Math..

[9]  Charles R. Johnson,et al.  A Simple Estimate of the Condition Number of a Linear System , 1995 .

[10]  D. E. Crabtree,et al.  Bounds for determinants , 1969 .

[11]  Lin Jia-hao,et al.  Computational structural mechanics and optimal control—the simulation of substructural chain theory to linear quadratic optimal control problems† , 1992 .

[12]  U. Schäfer A new subclass of P-matrices , 2004 .

[13]  Liqun Qi,et al.  Some Simple Estimates for Singular Values of a Matrix , 1984 .

[14]  G. Piazza,et al.  An upper bound for the condition number of a matrix in spectral norm , 2002 .

[15]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[16]  Ting-Zhu Huang,et al.  Inclusion sets for singular values , 2008 .

[17]  Wen Li Multiplicative perturbation bounds for spectral and singular value decompositions , 2008 .

[18]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .