A coherent spin–photon interface in silicon

[1]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[2]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[3]  N. Kalhor,et al.  Strong spin-photon coupling in silicon , 2017, Science.

[4]  J. R. Petta,et al.  Input-output theory for spin-photon coupling in Si double quantum dots , 2017, 1710.02508.

[5]  J. Morton,et al.  Inductive-detection electron-spin resonance spectroscopy with 65 spins/ Hz sensitivity , 2017, 1708.09287.

[6]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[7]  G. Burkard,et al.  Quantum CNOT Gate for Spins in Silicon [1] , 2017, 1708.03530.

[8]  S. Tarucha,et al.  A>99.9%-fidelity quantum-dot spin qubit with coherence limited by charge noise , 2017, 1708.01454.

[9]  X Mi,et al.  High-Resolution Valley Spectroscopy of Si Quantum Dots. , 2017, Physical review letters.

[10]  J. R. Petta,et al.  Strong coupling of a single electron in silicon to a microwave photon , 2017, Science.

[11]  Werner Wegscheider,et al.  Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator , 2017, 1701.03433.

[12]  A. Wieck,et al.  Coherent long-distance displacement of individual electron spins , 2017, Nature Communications.

[13]  D. Loss,et al.  Superconducting Grid-Bus Surface Code Architecture for Hole-Spin Qubits. , 2016, Physical review letters.

[14]  T. Kontos,et al.  Strong coupling between an electron in a quantum dot circuit and a photon in a cavity , 2016, 1612.05214.

[15]  J. R. Petta,et al.  Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon , 2016, 1610.05571.

[16]  J. Petta,et al.  Electron Spin Resonance at the Level of 10^{4} Spins Using Low Impedance Superconducting Resonators. , 2016, Physical review letters.

[17]  W. A. Coish,et al.  Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings , 2016, Nanotechnology.

[18]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[19]  Werner Wegscheider,et al.  Coherent spin-exchange via a quantum mediator. , 2016, Nature nanotechnology.

[20]  Takashi Nakajima,et al.  A fault-tolerant addressable spin qubit in a natural silicon quantum dot , 2016, Science Advances.

[21]  L. DiCarlo,et al.  High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field , 2015, 1511.01760.

[22]  C. C. Lo,et al.  Controlling spin relaxation with a cavity , 2015, Nature.

[23]  S. Hermelin,et al.  Fast spin information transfer between distant quantum dots using individual electrons. , 2015, Nature nanotechnology.

[24]  L. Vandersypen,et al.  Single-spin CCD. , 2015, Nature nanotechnology.

[25]  Andrea Morello,et al.  Bell's inequality violation with spins in silicon. , 2015, Nature nanotechnology.

[26]  T. Kontos,et al.  Coherent coupling of a single spin to microwave cavity photons , 2015, Science.

[27]  J. R. Petta,et al.  A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots , 2015, 1502.01624.

[28]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[29]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[30]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[31]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[32]  T. Ihn,et al.  Comment on "Vacuum Rabi splitting in a semiconductor circuit QED system". , 2013, Physical review letters.

[33]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[34]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[35]  F. Nori,et al.  Strong coupling of a spin qubit to a superconducting stripline cavity , 2012, 1204.4732.

[36]  Michael Marthaler,et al.  Strong coupling of spin qubits to a transmission line resonator. , 2011, Physical review letters.

[37]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[38]  H. Riemann,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[39]  C. H. W. Barnes,et al.  On-demand single-electron transfer between distant quantum dots , 2011, Nature.

[40]  J. Schmiedmayer,et al.  Cavity QED with magnetically coupled collective spin states. , 2011, Physical review letters.

[41]  L Frunzio,et al.  High-cooperativity coupling of electron-spin ensembles to superconducting cavities. , 2010, Physical review letters.

[42]  T. Kontos,et al.  Spin quantum bit with ferromagnetic contacts for circuit QED. , 2010, Physical review letters.

[43]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[44]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[45]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[46]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[47]  D. Loss,et al.  Spin dynamics in InAs nanowire quantum dots coupled to a transmission line , 2007, 0708.2091.

[48]  G. Burkard,et al.  Ultra-long distance interaction between spin qubits , 2006, cond-mat/0603119.

[49]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[50]  S. Girvin,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[51]  S. Girvin,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2004, Physical review letters.

[52]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[53]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[54]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[55]  M. Lukin,et al.  Mesoscopic cavity quantum electrodynamics with quantum dots , 2003, quant-ph/0309106.

[56]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[57]  Dreyer,et al.  Quantum Rabi oscillation: A direct test of field quantization in a cavity. , 1996, Physical review letters.

[58]  Thompson,et al.  Observation of normal-mode splitting for an atom in an optical cavity. , 1992, Physical review letters.

[59]  J. Verduijn Silicon Quantum Electronics , 2012 .