Noise in the segmentation gene network of Drosophila with implications for mechanisms of body axis specification

Specification of the anteroposterior (head-to-tail) axis in the fruit fly Drosophila melanogaster is one of the best understood examples of embryonic pattern formation, at the genetic level. A network of some 14 segmentation genes controls protein expression in narrow domains which are the first manifestation of the segments of the insect body. Work in the New York lab has led to a databank of more than 3300 confocal microscope images, quantifying protein expression for the segmentation genes, over a series of times during which protein pattern is developing (http://flyex.ams.sunysb.edu/FlyEx/). Quantification of the variability in expression evident in this data (both between embryos and within single embryos) allows us to determine error propagation in segmentation signalling. The maternal signal to the egg is highly variable, with noise levels more than several times those seen for expression of downstream genes. This implies that error suppression is active in the embryonic patterning mechanism. Error suppression is not possible with the favored mechanism of local concentration gradient reading for positional specification. We discuss possible patterning mechanisms which do reliably filter input noise.

[1]  L. Wolpert Positional information and pattern formation. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[2]  L. G. Harrison,et al.  Suppression of positional errors in biological development. , 1999, Mathematical biosciences.

[3]  T. Lacalli Modeling the Drosophila pair-rule pattern by reaction-diffusion: gap input and pattern control in a 4-morphogen system. , 1990, Journal of theoretical biology.

[4]  M. Kerszberg Accurate reading of morphogen concentrations by nuclear receptors: a formal model of complex transduction pathways. , 1996, Journal of theoretical biology.

[5]  J. Gurdon,et al.  Morphogen gradient interpretation , 2001, Nature.

[6]  J. W. Bodnar Programming the Drosophila embryo. , 1997, Journal of theoretical biology.

[7]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[8]  J. Hasty,et al.  Noise-based switches and amplifiers for gene expression. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  David M. Holloway,et al.  Evolutionary Techniques for Image Processing a Large Dataset of Early Drosophila Gene Expression , 2003, EURASIP J. Adv. Signal Process..

[10]  M. Ko,et al.  A stochastic model for gene induction. , 1991, Journal of theoretical biology.

[11]  M. Thattai,et al.  Attenuation of noise in ultrasensitive signaling cascades. , 2002, Biophysical journal.

[12]  K. Sander Of gradients and genes: Developmental concepts of Theodor Boveri and his students , 1994, Roux's archives of developmental biology.

[13]  Theodor Boveri Ergebnisse über die Konstitution der chromatischen Substanz des Zellkerns , 1904 .

[14]  I. Ross,et al.  Transcription of individual genes in eukaryotic cells occurs randomly and infrequently , 1994, Immunology and cell biology.

[15]  H. Meinhardt Models for maternally supplied positional information and the activation of segmentation genes in Drosophila embryogenesis , 1988 .

[16]  Theodor Boveri Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung : Zugleich ein Beitrag zur Frage qualitativ-ungleicher Chremosomen-Teilung , 1910 .

[17]  John Reinitz,et al.  Registration of the expression patterns of Drosophila segmentation genes by two independent methods , 2001, Bioinform..

[18]  David H. Sharp,et al.  Mechanism of eve stripe formation , 1995, Mechanisms of Development.

[19]  S. Leibler,et al.  Establishment of developmental precision and proportions in the early Drosophila embryo , 2002, Nature.

[20]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Reinitz,et al.  Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins , 1998, Development Genes and Evolution.

[22]  C. Nüsslein-Volhard,et al.  A gradient of bicoid protein in Drosophila embryos , 1988, Cell.

[23]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[24]  M. S. Ko Induction mechanism of a single gene molecule: stochastic or deterministic? , 1992, BioEssays : news and reviews in molecular, cellular and developmental biology.

[25]  John Reinitz,et al.  Sharp borders from fuzzy gradients. , 2002, Trends in genetics : TIG.

[26]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[27]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[28]  K. Struhl,et al.  The gradient morphogen bicoid is a concentration-dependent transcriptional activator , 1989, Cell.

[29]  Alexander V. Spirov,et al.  Reconstruction of the Dynamics of Drosophila Genes Expression from Sets of Images Sharing a Common Pattern , 2002, Real Time Imaging.

[30]  D Kosman,et al.  Automated assay of gene expression at cellular resolution. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[31]  B. Alberts,et al.  Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. , 1983, Journal of cell science.

[32]  Axel Hunding Supercomputer Simulation of Turing Structures in Drosophila Morphogenesis , 1993 .

[33]  David M. Holloway,et al.  Making the body plan: Precision in the genetic hierarchy of Drosophila embryo segmentation , 2003, Silico Biol..