A perturbed Lagrangian formulation for the finite element solution of contact problems

[1]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[2]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[3]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[4]  J. Tinsley Oden,et al.  PENALTY-FINITE ELEMENT METHODS FOR THE ANALYSIS OF STOKESIAN FLOWS* , 1982 .

[5]  J. N. Reddy,et al.  On penalty function methods in the finite‐element analysis of flow problems , 1982 .

[6]  Samuel W. Key,et al.  HONDO II: a finite element computer program for the large deformation dynamic response of axisymmetric solids. [HONDO] , 1978 .

[7]  A. Curnier,et al.  A finite element method for a class of contact-impact problems , 1976 .

[8]  I. S. Tuba,et al.  A finite element method for contact problems of solid bodies—Part II. Application to turbine blade fastenings , 1971 .

[9]  S. Chan,et al.  A finite element method for contact problems of solid bodies—Part I. Theory and validation , 1971 .

[10]  J. Oden Exterior Penalty Methods for Contact Problems in Elasticity , 1981 .

[11]  N. Kikuchi A Class of Rigid Punch Problems Involving Forces and Moments by Reciprocal Variational Inequalities , 1979 .

[12]  Carlos A. Felippa,et al.  Iterative procedures for improving penalty function solutions of algebraic systems , 1978 .

[13]  Carlos A. Felippa,et al.  Error analysis of penalty function techniques for constraint definition in linear algebraic systems , 1977 .

[14]  O. C. Zienkiewicz,et al.  A note on numerical computation of elastic contact problems , 1975 .

[15]  E. Wilson The static condensation algorithm , 1974 .