Assessment of possible transneuronal changes in the retina of rats with inherited retinal dystrophy: Cell size, number, synapses, and axonal transport by retinal ganglion cells

In pigmented RCS rats with inherited retinal dystrophy, most photoreceptor cells disappear between postnatal days 20 and 100. We have examined the time course of the degeneration of photoreceptor nuclei and synapses and determined whether transneuronal changes occur in the inner nuclear layer (INL), inner plexiform layer (IPL), und retinal ganglion cells following loss of photoreceptor cells in these animals.

[1]  T. Woolsey,et al.  Quantitative histochemical effects of whisker damage on single identified cortical barrels in the adult mouse , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  W. Noell Cellular Physiology of the Retina , 1963 .

[3]  J. Kraehenbuhl,et al.  Immunocytochemical localization of opsin in outer segments and Golgi zones of frog photoreceptor cells. An electron microscope analysis of cross-linked albumin-embedded retinas , 1978, The Journal of cell biology.

[4]  S. Fisher,et al.  Synaptic organization of the inner plexiform layer of the retina of Xenopus laevis , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  M. Murray,et al.  Protein synthesis and axonal transport in retinal ganglion cells of mice lacking visual receptors. , 1972, Brain research.

[6]  K. Chow Failure to demonstrate changes in the visual system of monkeys kept in darkness or in colored lights , 1955, The Journal of comparative neurology.

[7]  F. Colavita,et al.  Behavioral and electrophysiological changes in visual sensitivity following prolonged exposure to constant light , 1975, Experimental Neurology.

[8]  L. Ronnevi,et al.  Ultrastructural evidence for spontaneous elimination of synaptic terminals on spinal motoneurons in the kitten. , 1974, Brain research.

[9]  V. Lemmon,et al.  Neurophysiological Properties of Visual Neurons in Rats with Light Damaged Retinas , 1980 .

[10]  J. Stone,et al.  Physiological normality of the retinal in visually deprived cats. , 1973, Brain research.

[11]  J. Blanks,et al.  Synaptogenesis in the photoreceptor terminal of the mouse retina , 1974, The Journal of comparative neurology.

[12]  A. J. Dewar,et al.  Metabolism of nuclear and cytoplasmic proteins in the visual cortex of sighted rats and rats with retinal degeneration. , 1973, Experimental neurology.

[13]  Yutaka Fukuda,et al.  A three-group classification of rat retinal ganglion cells: histological and physiological studies , 1977, Brain Research.

[14]  L. Fisher Development of synaptic arrays in the inner plexiform layer of neonatal mouse retina , 1979, The Journal of comparative neurology.

[15]  A. Ruiz-Marcos,et al.  Dynamic architecture of the visual cortex. , 1970, Brain research.

[16]  V. Perry Evidence for an amacrine cell system in the ganglion cell layer of the rat retina , 1981, Neuroscience.

[17]  M. Lavail KINETICS OF ROD OUTER SEGMENT RENEWAL IN THE DEVELOPING MOUSE RETINA , 1973, The Journal of cell biology.

[18]  G. Maraini,et al.  Effect of monocular light-deprivation on leucine uptake in the retina and the optic centres of the newborn rat. , 1967, Experimental eye research.

[19]  G. Maraini,et al.  Metabolic changes in the retina and the optic centres following monocular light deprivation in the new-born rat. , 1969, Experimental eye research.

[20]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[21]  J. Sjöstrand,et al.  Effect of deprivation of light on axonal transport in retinal ganglion cells of the rabbit. , 1971, Brain research.

[22]  J. Blanks,et al.  Photoreceptor degeneration and synaptogenesis in retinal‐degenerative (rd) mice , 1974, The Journal of comparative neurology.

[23]  U. Dräger,et al.  Ganglion cell distribution in the retina of the mouse. , 1981, Investigative ophthalmology & visual science.

[24]  W. Cowan Anterograde and Retrograde Transneuronal Degeneration in the Central and Peripheral Nervous System , 1970 .

[25]  M. Lavail Photoreceptor characteristics in congenic strains of RCS rats. , 1981, Investigative ophthalmology & visual science.

[26]  J. Parnavelas Photically evoked responses from the visual cortex of rats reared under continuous illumination , 1976, Experimental Neurology.

[27]  M. Lavail,et al.  Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. , 1975, Experimental eye research.

[28]  N. Ashton Degeneration of the retina due to 1 : 5‐di (p‐aminophenoxy) pentane dihydrochloride , 1957 .

[29]  D. G. Green,et al.  Cone inputs to ganglion cells in hereditary retinal degeneration. , 1979, Science.

[30]  R. Sidman,et al.  Pink-eyed dilution (p) gene in rodents: increased pigmentation in tissue culture. , 1965, Developmental biology.

[31]  C R Braekevelt,et al.  The development of the retina of the albino rat. , 1970, The American journal of anatomy.

[32]  M. Beane,et al.  Visual sensitivity to orientation of rectangles in mice with retinal degeneration. , 1976, Developmental psychobiology.

[33]  L. Jan,et al.  ULTRASTRUCTURAL LOCALIZATION OF RHODOPSIN IN THE VERTEBRATE RETINA , 1974, The Journal of cell biology.

[34]  R. Sidman,et al.  Genetic control of retinal ganglion cell projections , 1978, The Journal of comparative neurology.

[35]  Z. Nagy,et al.  Development of adult-like open-field behaviors in young retinal-degenerate C3H mice. , 1972, Developmental psychobiology.

[36]  A. Mariani,et al.  Biplexiform cells: ganglion cells of the primate retina that contact photoreceptors. , 1982, Science.

[37]  M. Dubin The inner plexiform layer of the vertebrate retina: A quantitative and comparative electron microscopic analysis , 1970, The Journal of comparative neurology.

[38]  J. Hollyfield,et al.  Modifications by light of synaptic density in the inner plexiform layer of the toad, Xenopus laevis , 1977, Experimental Neurology.

[39]  L. Fisher Development of retinal synaptic arrays in the inner plexiform layer of dark-reared mice. , 1979, Journal of embryology and experimental morphology.

[40]  J. Revel,et al.  Hemocyanin - antibody labeling of phodopsin in mouse retina for a scanning electron microscope study. , 1975, Journal of Supramolecular Structure.

[41]  M. Wong-Riley Synaptic organization of the inner plexiform layer in the retina of the tiger salamander , 1974, Journal of neurocytology.

[42]  A. Riesen,et al.  Altered structure and composition of retinal cells in darkreared mammals. , 1961, Experimental cell research.

[43]  K. V. Anderson,et al.  Black-white and pattern discrimination in rats without photoreceptors. , 1972, Experimental neurology.

[44]  F. Valverde,et al.  Rate and extent of recovery from dark rearing in the visual cortex of the mouse. , 1971, Brain research.

[45]  B. Boycott,et al.  Organization of the primate retina: electron microscopy , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[46]  P. Glow,et al.  Increase in number of synapses in the inner plexiform layer of light deprived rat retinae: Quantitative electron microscopy , 1971, The Journal of comparative neurology.

[47]  J. Stone,et al.  The number and distribution of ganglion cells in the cat's retina , 1978, The Journal of comparative neurology.

[48]  L. Barr,et al.  Localization of rhodopsin antibody in the retina of the frog. , 1969, Journal of molecular biology.

[49]  R. Sidman,et al.  Discrimination of light intensity by rats with inherited retinal degeneration: a behavioral and cytological study. , 1974, Vision research.

[50]  R. Sidman,et al.  Differential effect of the rd mutation on rods and cones in the mouse retina. , 1978, Investigative ophthalmology & visual science.

[51]  K. Tansley,et al.  HEREDITARY DEGENERATION OF THE RAT RETINA , 1938, The British journal of ophthalmology.

[52]  D. Bok,et al.  Rhodopsin in the rod outer segment plasma membrane , 1976, The Journal of cell biology.

[53]  P. Rakić,et al.  Differentiation of Purkinje cells and their relationship to other components of developing cerebellar cortex in man , 1976, The Journal of comparative neurology.

[54]  J. R. Misanin,et al.  Visual perception in the retinal degenerate C3H mouse. , 1970, Journal of comparative and physiological psychology.

[55]  Richard L. Sidman,et al.  INHERITED RETINAL DYSTROPHY IN THE RAT , 1962, The Journal of cell biology.

[56]  P. Glow,et al.  A quantitative ultrastructural study of the inner plexiform layer of the rat retina , 1970, The Journal of comparative neurology.

[57]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[58]  K. V. Anderson,et al.  Retinal damage after prolonged exposure to visible light. A light and electron microscopic study. , 1972, The American journal of anatomy.

[59]  R. Liebelt,et al.  The postnatal development of the retina in the normal and rodless CBA mouse: a light and electron microscopic study. , 1972, The American journal of anatomy.

[60]  B. Boycott,et al.  Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina , 1981, The Journal of comparative neurology.

[61]  E. Fifková,et al.  Effect of visual deprivation and light on synapses of the inner plexiform layer. , 1972, Experimental neurology.

[62]  A. Riesen,et al.  Degeneration of retinal ganglion cells in infant chimpanzees reared in darkness , 1957, The Journal of comparative neurology.

[63]  A re‐examination of anatomical plasticity in the rat retina , 1976, The Journal of comparative neurology.