Independent Set in P5-Free Graphs in Polynomial Time

The Independent Set problem is NP-hard in general, however polynomial time algorithms exist for the problem on various specific graph classes. Over the last couple of decades there has been a long sequence of papers exploring the boundary between the NP-hard and polynomial time solvable cases. In particular the complexity of Independent Set on P5-free graphs has received significant attention, and there has been a long list of results showing that the problem becomes polynomial time solvable on sub-classes of P5-free graphs. In this paper we give the first polynomial time algorithm for Independent Set on P5-free graphs. Our algorithm also works for the Weighted Independent Set problem.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  G. Dirac On rigid circuit graphs , 1961 .

[3]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[4]  S. Poljak A note on stable sets and colorings of graphs , 1974 .

[5]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[6]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[7]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[8]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory B.

[11]  Najiba Sbihi,et al.  Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..

[12]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[13]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[14]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[15]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[16]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[17]  Egon Balas,et al.  On graphs with polynomially solvable maximum-weight clique problem , 1989, Networks.

[18]  Richard C. T. Lee,et al.  Counting Clique Trees and Computing Perfect Elimination Schemes in Parallel , 1989, Inf. Process. Lett..

[19]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[20]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[21]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[22]  Jeremy P. Spinrad,et al.  On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..

[23]  Blair J R S,et al.  Introduction to Chordal Graphs and Clique Trees, in Graph Theory and Sparse Matrix Computation , 1997 .

[24]  Andreas Parra,et al.  Characterizations and Algorithmic Applications of Chordal Graph Embeddings , 1997, Discret. Appl. Math..

[25]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[26]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[27]  Dieter Kratsch,et al.  Independent Sets in Asteroidal Triple-Free Graphs , 1997, SIAM J. Discret. Math..

[28]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[29]  Yasuhiko Morimoto,et al.  Data Mining with optimized two-dimensional association rules , 2001, TODS.

[30]  Pinar Heggernes,et al.  A practical algorithm for making filled graphs minimal , 2001, Theor. Comput. Sci..

[31]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[32]  Ioan Todinca,et al.  Listing all potential maximal cliques of a graph , 2000, Theor. Comput. Sci..

[33]  Andreas Brandstädt,et al.  On the structure and stability number of P5- and co-chair-free graphs , 2003, Discret. Appl. Math..

[34]  Vadim V. Lozin,et al.  On the stable set problem in special P5-free graphs , 2003, Discret. Appl. Math..

[35]  Vadim V. Lozin,et al.  An augmenting graph approach to the stable set problem in P5-free graphs , 2003, Discret. Appl. Math..

[36]  V. E. Alekseev,et al.  Polynomial algorithm for finding the largest independent sets in graphs without forks , 2004, Discret. Appl. Math..

[37]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[38]  Vadim V. Lozin,et al.  Augmenting graphs for independent sets , 2004, Discret. Appl. Math..

[39]  Vadim V. Lozin,et al.  Independent sets in extensions of 2K2-free graphs , 2005, Discret. Appl. Math..

[40]  Pinar Heggernes,et al.  Minimal triangulations of graphs: A survey , 2006, Discret. Math..

[41]  Martin Milanič,et al.  A polynomial algorithm to find an independent set of maximum weight in a fork-free graph , 2006, SODA '06.

[42]  Raffaele Mosca Some observations on maximum weight stable sets in certain P , 2008, Eur. J. Oper. Res..

[43]  Vadim V. Lozin,et al.  Deciding k-Colorability of P5-Free Graphs in Polynomial Time , 2007, Algorithmica.

[44]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[45]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[46]  Ingo Schiermeyer,et al.  On maximum independent sets in P5-free graphs , 2010, Discret. Appl. Math..

[47]  Fedor V. Fomin,et al.  Finding Induced Subgraphs via Minimal Triangulations , 2009, STACS.

[48]  Matús Mihalák,et al.  Vertex Disjoint Paths for Dispatching in Railways , 2010, ATMOS.

[49]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[50]  Raffaele Mosca,et al.  Some Results on Stable Sets for k-Colorable P6-Free Graphs and Generalizations , 2012, Discret. Math. Theor. Comput. Sci..

[51]  Frédéric Maffray,et al.  On 3-Colorable P5-Free Graphs , 2012, SIAM J. Discret. Math..