A bounded degree SOS hierarchy for polynomial optimization

We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem $$(P):\,f^{*}=\min \{f(x):x\in K\}$$(P):f∗=min{f(x):x∈K} on a compact basic semi-algebraic set $$K\subset \mathbb {R}^n$$K⊂Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some advantages of the standard SOS-hierarchy. In particular it has the following attractive features: (a) in contrast to the standard SOS-hierarchy, for each relaxation in the hierarchy, the size of the matrix associated with the semidefinite constraint is the same and fixed in advance by the user; (b) in contrast to the LP-hierarchy, finite convergence occurs at the first step of the hierarchy for an important class of convex problems; and (c) some important techniques related to the use of point evaluations for declaring a polynomial to be zero and to the use of rank-one matrices make an efficient implementation possible. Preliminary results on a sample of non convex problems are encouraging.

[1]  M. Marshall,et al.  Representations of Non-Negative Polynomials, Degree Bounds and Applications to Optimization , 2009, Canadian Journal of Mathematics.

[2]  J. William Helton,et al.  Semidefinite representation of convex sets , 2007, Math. Program..

[3]  Jean B. Lasserre,et al.  A Lagrangian relaxation view of linear and semidefinite hierarchies , 2012, 52nd IEEE Conference on Decision and Control.

[4]  R. Curto,et al.  The truncated complex -moment problem , 2000 .

[5]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[6]  Madhur Tulsiani,et al.  SDP Gaps from Pairwise Independence , 2012, Theory Comput..

[7]  J. Krivine,et al.  Anneaux préordonnés , 1964 .

[8]  Duan Li,et al.  On zero duality gap in nonconvex quadratic programming problems , 2012, J. Glob. Optim..

[9]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[10]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[11]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[12]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..

[13]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[14]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[15]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[16]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[17]  Avner Magen,et al.  Extending SDP Integrality Gaps to Sherali-Adams with Applications to Quadratic Programming and MaxCutGain , 2010, IPCO.

[18]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[19]  Jean B. Lasserre,et al.  Semidefinite Programming vs. LP Relaxations for Polynomial Programming , 2002, Math. Oper. Res..

[20]  J. Lasserre,et al.  Detecting global optimality and extracting solutions in GloptiPoly , 2003 .

[21]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[22]  Madhur Tulsiani,et al.  Convex Relaxations and Integrality Gaps , 2012 .

[23]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[24]  D. Handelman Representing polynomials by positive linear functions on compact convex polyhedra. , 1988 .

[25]  Amir Ali Ahmadi,et al.  DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization , 2014, 2014 48th Annual Conference on Information Sciences and Systems (CISS).

[26]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[27]  Etienne de Klerk,et al.  On the Lasserre Hierarchy of Semidefinite Programming Relaxations of Convex Polynomial Optimization Problems , 2011, SIAM J. Optim..

[28]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[29]  M. Kojima,et al.  B-411 Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[30]  Jean B. Lasserre,et al.  Convexity in SemiAlgebraic Geometry and Polynomial Optimization , 2008, SIAM J. Optim..

[31]  Diethard Klatte,et al.  A Frank–Wolfe Type Theorem for Convex Polynomial Programs , 2002, Comput. Optim. Appl..

[32]  J. William Helton,et al.  Semidefinite Representation of Convex Sets and Convex Hulls , 2012 .

[33]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .