Back-propagation is not Efficient

[1]  Landsborough Thomson [Book Reviews] , 1962, Nature.

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[4]  Gerald Tesauro,et al.  Scaling Relationships in Back-Propagation Learning: Dependence on Training Set Size , 1987, Complex Syst..

[5]  R. Fletcher Practical Methods of Optimization , 1988 .

[6]  Gerald Tesauro,et al.  Scaling Relationships in Back-propagation Learning , 1988, Complex Syst..

[7]  Eric B. Baum,et al.  A Polynomial Time Algorithm That Learns Two Hidden Unit Nets , 1990, Neural Computation.

[8]  J. Stephen Judd,et al.  Neural network design and the complexity of learning , 1990, Neural network modeling and connectionism.

[9]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[10]  Nicholas J. Redding,et al.  Constructive higher-order network that is polynomial time , 1993, Neural Networks.

[11]  Herbert Wiklicky The neural network loading problem is undecidable , 1994 .

[12]  Eduardo D. Sontag,et al.  Finiteness results for sigmoidal “neural” networks , 1993, STOC.

[13]  Klaus-Uwe Höffgen,et al.  Computational Limitations on Training Sigmoid Neural Networks , 1993, Information Processing Letters.

[14]  Jirí Síma,et al.  Loading Deep Networks Is Hard , 1994, Neural Comput..

[15]  Wolfgang Maass,et al.  Perspectives of Current Research about the Complexity of Learning on Neural Nets , 1994 .

[16]  Paul C. Kainen,et al.  Functionally Equivalent Feedforward Neural Networks , 1994, Neural Computation.

[17]  Hava T. Siegelmann,et al.  On the complexity of training neural networks with continuous activation functions , 1995, IEEE Trans. Neural Networks.