Prediction of equilibrium isotopic fractionation of the gypsum/bassanite/water system using first-principles calculations

Abstract The stable isotopes ( 18 O/ 16 O, 17 O/ 16 O and 2 H/ 1 H) of structurally-bound water (also called hydration water) in gypsum (CaSO 4 ·2H 2 O) and bassanite (CaSO 4 ·0.5H 2 O) can be used to reconstruct the isotopic composition of paleo-waters. Understanding the variability of the isotope fractionation factors between the solution and the solid (α 17 O mineral-water , α 18 O mineral-water and αD mineral-water ) is crucial for applying this proxy to paleoclimatic research. Here we predict the theoretical equilibrium fractionation factors for triple oxygen and hydrogen isotopes in the gypsum-water and bassanite-water systems between 0 °C and 60 °C. We apply first-principles using density functional theory within the harmonic approximation. Our theoretical results for α 18 O gypsum-water (1.0035 ± 0.0004) are in agreement with previous experimental studies, whereas αD gypsum-water agrees only at temperatures above 25 °C. At lower temperatures, the experimental values of αD gypsum-water are consistently higher than theoretical values (e.g. 0.975 and 0.978, respectively, at 3 °C), which can be explained by kinetic effects that affect gypsum precipitation under laboratory conditions at low temperature. We predict that α 18 O bassanite-water is similar to α 18 O gypsum-water in the temperature range of 0–60 °C. Both α 18 O gypsum-water and α 18 O bassanite-water show a small temperature dependence of ∼0.000012 per °C, which is negligible for most paleoclimate studies. The theoretical relationship between α 17 O gypsum-water and α 18 O gypsum-water (θ = l n α 17 O l n α 18 O ) from 0 °C to 60 °C is 0.5274 ± 0.0006. The relationship is very insensitive to temperature (0.00002 per °C). The fact that δ 18 O values of gypsum hydration water are greater than free water (α 18 O gypsum-water  > 1) whereas δD values of gypsum hydration water are less than free water (αD gypsum-water

[1]  V. Szalay,et al.  On equilibrium structures of the water molecule. , 2005, The Journal of chemical physics.

[2]  H. Bao,et al.  Triple Oxygen Isotopes: Fundamental Relationships and Applications , 2016 .

[3]  E. Barkan,et al.  High precision measurements of 17O/16O and 18O/16O ratios in H2O. , 2005, Rapid communications in mass spectrometry : RCM.

[4]  S. Bernasconi,et al.  Quantitative estimates of tropical temperature change in lowland Central America during the last 42 ka , 2016 .

[5]  J. Hoffnagle,et al.  Calibrated high-precision 17 O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance , 2014 .

[6]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[7]  J. Fontes,et al.  Oxygen Isotopic Fractionation in the Water of Crystallization of Gypsum , 1963, Nature.

[8]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[9]  D. Cole,et al.  The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II. Vapor-liquid water equilibration of mixed salt solutions from 50 to 100°C and geochemical implications , 1993 .

[10]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[11]  M. Stewart,et al.  Deuterium Fractionation Between Aqueous Salt Solutions and Water Vapor , 1975 .

[12]  F. Huang,et al.  First-principles calculations of equilibrium fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon , 2016, Contributions to Mineralogy and Petrology.

[13]  K. Knight,et al.  Thermal expansion of gypsum investigated by neutron powder diffraction , 1996 .

[14]  P. Forti,et al.  The Caves of Naica: a decade of research , 2016 .

[15]  G. Scuseria,et al.  Generalized gradient approximation for solids and their surfaces , 2007, 0707.2088.

[16]  E. Schauble Applying Stable Isotope Fractionation Theory to New Systems , 2004 .

[17]  N. Kampman,et al.  Isotopic analysis of sulfur cycling and gypsum vein formation in a natural CO2 reservoir , 2016 .

[18]  Yun Liu,et al.  Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes , 2011 .

[19]  C. Pillinger,et al.  The oxygen‐isotopic composition of Earth and Mars , 1999 .

[20]  C. Verpoorter,et al.  Wide distribution and glacial origin of polar gypsum on Mars , 2011 .

[21]  Z. Sofer Isotopic composition of hydration water in gypsum , 1978 .

[22]  O. Matsubaya,et al.  Oxygen and hydrogen isotopic study on the water of crystallization of gypsum from the Kuroko type mineralization , 1973 .

[23]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[24]  J. García‐Ruiz,et al.  The Role and Implications of Bassanite as a Stable Precursor Phase to Gypsum Precipitation , 2012, Science.

[25]  H. Cölfen,et al.  Controlling the selective formation of calcium sulfate polymorphs at room temperature. , 2015, Angewandte Chemie.

[26]  T. Oi,et al.  Oxygen and Hydrogen Isotopic Preference in Hydration Spheres of Chloride and Sulfate Ions , 2013 .

[27]  J. Madariaga,et al.  Raman spectra of the different phases in the CaSO4-H2O system. , 2014, Analytical chemistry.

[28]  J. Gat,et al.  Activities and concentrations of oxygen-18 in concentrated aqueous salt solutions: Analytical and geophysical implications , 1972 .

[29]  Efficient index handling of multidimensional periodic boundary conditions , 2001, cond-mat/0104182.

[30]  N. Kong,et al.  Fractionation of hydrogen and oxygen isotopes of gypsum hydration water and assessment of its geochemical indications , 2014 .

[31]  E. Barkan,et al.  Variations of 17O/16O and 18O/16O in meteoric waters , 2010 .

[32]  A. Schauer,et al.  Measurement of SLAP2 and GISP δ17O and proposed VSMOW-SLAP normalization for δ17O and 17O(excess). , 2013, Rapid communications in mass spectrometry : RCM.

[33]  J. Seewald,et al.  Hydrogen and oxygen isotope fractionation between brucite and aqueous NaCl solutions from 250 to 450°C , 1998 .

[34]  M. Lazzeri,et al.  Equilibrium isotopic fractionation in the kaolinite, quartz, water system: Prediction from first-principles density-functional theory , 2007 .

[35]  B. Valero-Garcés,et al.  Triple oxygen and hydrogen isotopes of gypsum hydration water for quantitative paleo-humidity reconstruction , 2018 .

[36]  J. Horita,et al.  Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature , 1994 .

[37]  F. Meldrum,et al.  Additives stabilize calcium sulfate hemihydrate (bassanite) in solution , 2012 .

[38]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[39]  P. Forti,et al.  Climatic control on the growth of gigantic gypsum crystals within hypogenic caves (Naica mine, Mexico)? , 2010 .

[40]  M. Natalicchio,et al.  Did Late Miocene (Messinian) gypsum precipitate from evaporated marine brines? Insights from the Piedmont Basin (Italy) , 2014 .

[41]  R. Clayton,et al.  Oxygen isotope salt effects at high pressure and high temperature and the calibration of oxygen isotope geothermometers , 2003 .

[42]  R. Zeebe A new value for the stable oxygen isotope fractionation between dissolved sulfate ion and water , 2010 .

[43]  S. Assonov,et al.  Triple oxygen isotope systematics of structurally bonded water in gypsum , 2017 .

[44]  F. Gázquez,et al.  Simultaneous analysis of 17O/16O, 18O/16O and 2H/1H of gypsum hydration water by cavity ring‐down laser spectroscopy , 2015, Rapid communications in mass spectrometry : RCM.

[45]  S. Squyres,et al.  Identification of the Ca-sulfate bassanite in Mawrth Vallis, Mars , 2010 .

[46]  F. Gázquez,et al.  Coupled measurements of δ18O and δD of hydration water and salinity of fluid inclusions in gypsum from the Messinian Yesares Member, Sorbas Basin (SE Spain) , 2015 .

[47]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. , 1991, Physical review. B, Condensed matter.

[48]  P. Richet,et al.  A Review of Hydrogen, Carbon, Nitrogen, Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules , 1977 .

[49]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[50]  F. Gázquez,et al.  Precise and accurate isotope fractionation factors (α17O, α18O and αD) for water and CaSO4·2H2O (gypsum) , 2017 .

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  M. Méheut,et al.  Silicon isotope fractionation in silicate minerals: Insights from first-principles models of phyllosilicates, albite and pyrope , 2014 .

[53]  R. Clayton,et al.  Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kbar , 1978 .

[54]  J. Escobar,et al.  Late Glacial temperature and precipitation changes in the lowland Neotropics by tandem measurement of δ18O in biogenic carbonate and gypsum hydration water , 2012 .

[55]  H. Cölfen,et al.  A simple strategy for the synthesis of well-defined bassanite nanorods , 2015 .

[56]  F. ScHorrrlD,et al.  Thermal expansion of gypsum investigated by neutron powder diffraction , 2007 .

[57]  B. Reynard,et al.  D/H isotopic fractionation between brucite Mg(OH)2 and water from first-principles vibrational modeling , 2009 .

[58]  J. Calaforra,et al.  Using stable isotopes (δ 17 O, δ 18 O and δD) of gypsum hydration water to ascertain the role of water condensation in the formation of subaerial gypsum speleothems , 2017 .